
Do it yourself Model Driven Development
FlexiUtil

Ananda Joshi
Architect Advanced,

Enterprise Web Technologies, Mphasis

Prologue 3

Most common factors affecting project cost 3

Struts-based Web Application 3

Discrete development of technological components 4

Increased coding results in lower maintainability 4

Over-allocation of skilled resources 4

FlexiUtils - The Concept 5

The Meta-model 5

Technological Components 6

Implementation: The reference injection 6

Alternate Implementation: Code generation 7

Benefits 7

Reduced Coding Effort 7

Improved Maintainability 7

Improved Resource Utilization 8

Other Benefits 8

Mphasis Case Study 8

Conclusion 9

References 9

About the Author 9

Table of Contents

Prologue

Most common factors affecting project cost

The methodology of Model Driven Development (MDD) is not new. The advantages of using MDD are innumerous. However,

there are not many development projects that use the tools and the methodology. Some of the reasons could be:

 • The licensing cost and hardware requirements for the tools are a very high initial investment

 • There will be recurring cost, even after development which increases operational cost

 • The tools require special training. Trained resources available in the market are not many

 • While MDD helps in having smaller number of resources to deliver large volume of output, the experience and the

 skill-level of these resources are expected to be very high.

 • Customizations to the tool itself (if at all required) would be very complex and require very long turn-around time

The other factors that may have to be considered:

 • Difficult to introduce or to exit out of the methodology in the middle of the project

 • Difficult to migrate from one tool to another

In general, the objectives of MDD tools is to separate the functional aspects from the technical implementation. They takeout

most of the coding effort; thereby improving turnaround time and maintainability.

The focus of this paper is not to build an MDD tool that would be comparable to a commercial one. It is to identify the problems

faced by the project and how best we can address them by changing our design approach.

In absence of MDD, the typical problems faced as part of project execution are:

 • Development of discrete technological components

 • More code usually results in less maintainability

 • Skilled resources of all technological components are needed during most part of the development and testing.

This is further explained in the sections that follow with a simplest and widely used framework as an example: Struts-based web

application.

There are plenty of open source frameworks, 3rd party products that address many architectural and design patterns and have

been widely accepted by the development community. While they make development easier, the project team still has to

develop the technological components as needed by the frameworks to address the business functionality.

The proposed approach does not mandate or prescribe any additional tools or frameworks, but sticks to the finalized framework

Whatever is decided for the project is more than sufficient.

While the sample application uses Struts-based architecture, the concept can be applied to applications using Dot-Net-based

technologies too.

Struts-based Web Application
The Struts, as you may already know, is a framework that implements Model-View-Controller architectural pattern and helps

web applications to standardize the development. While it provides several utilities and plug-ins that can be directly used, the

project team will have to develop / hand-code the key technological components such as Action, ActionForm (in Struts 2, this

may be combined with Action) and JSP for each set of business functionality. As part of multi-layered architecture, they also

need to develop the corresponding Services and DAO.

3Do it yourself Model Driven Development Mphasis

Figure 1: Sample Web Application Using Struts

Function

Te
ch

ni
ca

l C
om

p
on

en
ts

/A
rt

ifa
ct

s

View

Model

Controller

Service

DAO

Device Search
JSP

Device Search
Action From

Installer Search
JSP

Customer Search
JSP

Installer Search
Action Form

Customer Search
Action Form

Installer Search
Action

Customer Search
Action

Installer Search
Service

Customer Search
Service

Installer Search
DAO

Customer Search
DAO

Device Search
Action

Device Search
Service

Device Search
DAO

Device Search Installer Search Customer Search

The diagram as shown in Figure 1: Sample Web Application Using Struts shows the artifacts involved in implementing search

functionality of different entities. For a Struts-based architecture, in the traditional approach, each functionality is implemented

with its own View, Model and Controller. In addition, it may have used separate set of Services and DAO.

If you are involved in estimating and planning activities of the project, you may immediately recognize that you have to allocate

time and resource(s) for each of these artifacts for development and testing. In most cases, the resources who work on the

frontend development and that of service and DAO layers would be different. You may end up having skilled resources blocked

for each unit task, which is directly proportional to the number of artifacts being developed.

Let us assume that a web application requires Customer Search, Installer Search, and Device Search functionality. The search

functionality should provide a web form that accepts a set of criteria. The criteria may vary for each functionality. They need to

execute a query on corresponding table(s) and display a set of matching records as table.

Development of discrete technological components
For every functional sub-module, you may end up developing the 5 artifacts. In the above example, you may see 15 artifacts to

be developed for the 3 functionality. The project effort is directly proportional to the number of artifacts to be developed.

Increased coding results in lower maintainability
As the number of hand-coded components increase, the application maintainability reduces. For example, if you want to

introduce pagination of results or to change the number of rows to be displayed per page, you will have to make changes to

every JSP and DAO (at the least).

Over-allocation of skilled resources
The developers of UI components and Server-side components may take up one task or the other sequentially. But they need to

be allocated to the project until the development and testing are complete, at the minimum.

The cost of project due to above problems can be reduced by large extent, if not eliminated, if there is a way to keep functional

requirements and technological needs separate. The technological sub-components can be developed once, and reused across

functional sub-components.

4Do it yourself Model Driven Development Mphasis

FlexiUtils - The Concept
FlexiUtils is the name given to the framework that Mphasis developed implementing the concept. However, the focus of this

whitepaper is about the concept, not the framework itself.

With reference to the sample web application, the functional entities – The device, the installer, and the customer – are unique.

The characteristics and the content of these entities are different. The details that goes in to each of functional sub-component

in the above example may be different. For example, number of elements of html form; the model (Java object) used for the

functional entity; and the validations to be performed may all be different.

However, if you look at the abstract level, they all appear to be similar in nature:
 1. Display a web form to accept & validate input; look-and-feel are standardized

 2. Transform the http input data to java objects; conversion of http parameter to Java attributes are standardized

 3. Call the service, which in turn uses a DAO to executes required query; execution of query and retrieving results are

 standardized

 4. Transform the fetched details back to output format; converting Java objects into http parameters are standardized

 5. Display the result as a table in the html; construction of the result table is standardized

Most part of the technological implementation is standardized. Most part of the functional implementation are specific to each

functional unit. The concept tries to take this standardization as an advantage and suggests that the technical implementations

can be generic and operate them with a functional model.

The concept involves following steps:
 • Create a meta-model of the functionality

 • Create technical components following all project standards, but keep them independent of functionality

 • Combine them together to implement the required functionality, by injecting the reference of meta-model in to the

 technical component.

The Meta-model
The meta-model, in general, will contain “what” part of the functional requirement. Since the architecture is multi-layered, the

meta-model should support “what” is required in each of those layers. For example, following could be the simplest distribution

of functional needs across the architectural layers:

Presentation layer:
 • What is the page title?

 • What are the form fields?

 • What are the types of each form field?

 • What are the columns to be displayed as part of search results?

Service layer:
 • What user roles are allowed to search?

 • Which Java object to be used for the functionality?

 • What validations are to be performed?

 • What processing is required on the result, before presenting?

Data access layer:
 • What query to be used for searching?

 • What filter criteria needs to be applied?

 • What columns are to be retrieved?

5Do it yourself Model Driven Development Mphasis

Figure 2: Revised Web Application - FlexiUtil concept

Technological Components
The technological components are the ones that implement the functionality; they cover “how” part of functional requirements.

There may be one or more pieces that address each architectural layer. They may not have direct reference to a functional

entity. Instead, they would use the instance of meta-model to execute / deliver the functionality.

For example, following could be a simple implementation in a JSP, assuming the right meta-model is passed on to it based on

the functionality being requested:

 • Get the page title and display with right CSS and at appropriate position of the page

 • Get the form, loop through the form elements. For each element, display it as text-box, drop-down, label, etc., as per the

 configuration.

 • Get the list of commands and display them as buttons.

The JSP just serves its purpose – to render the html form as per the definition of meta-model. It need not have any reference to

Device Search, Customer Search, or Installer Search functional entities directly. However, when the generated html is delivered

to the browser, it just behaves as the intended function - Device Search, Customer Search, or Installer Search.

Similarly, the Action Class may implement the intended functionality by using the meta-model:

 • Populate the Java object configured for the functionality

 • Perform initial validations

 • Invoke the service intended for the search functionality and get the search results

 • Prepare the search results so that they are ready for display

 • Forward to the JSP intended to display the search results

Implementation: The reference injection
This step is to inject the reference of the functional meta-model into the technical component. In case of frameworks like Spring,

this may happen through the framework’s capability. In Struts, the technical component may have to obtain the reference to the

model explicitly.

If the above approach is followed, the effort is to develop the technical components as generic components, only once. The

functional architecture for the example being discussed in this white paper may be revised as below:

Function

tT
ec

hn
ic

al
 C

om
p

on
en

ts
/A

rt
ifa

ct
s

View FlexiUtil Search JSP

FlexiUtil Search Action Form

FlexiUtil Search Action

FlexiUtil Search Service

FlexiUtil Search AO

Model

Controller

Service

DAO

Device
Search

Installer
Search

Customer
Search

R
ef

er
en

ce
 In

je
ct

io
n Device

Meta Model

Installer
Meta Model

Customer
Meta Model

6Do it yourself Model Driven Development Mphasis

Benefits

As shown, there is no deviation from the intended architecture or any compliance to the standards. The functionality as needed

is still delivered without any compromise; but, with fewer components.

In addition, the same set of components can be used for any new search related functional requirements. It does not require any

changes to the technological components. Only the corresponding meta-model needs to be created.

Alternate Implementation: Code generation
Once we have the functional specifications documented as meta-model, we may use the code generators as an alternate

approach, which creates the JSP, Action, Service, DAO, etc., for each functional unit. They can be done either as a manual step

as part of build process, or automated (using ant, for example). In this approach, the effort needs to be considered for the

development of Code Generators.

The number of artifacts finally used in deploying the application may be same as that of traditional approach (refer Figure 1:

Sample Web Application Using Struts). However, the development effort is limited to that of code generators.

With better design and focused implementation, the approach helps in achieving following benefits.

Reduced Coding Effort
Whether you use Runtime Reference Injection approach or Code Generation approach, the effort is not proportional to the

number of functional units.

Higher the number of functional units, higher the savings in effort. In most cases, the break-even of efforts can be achieved for

reuse of these components for 3 functional units. Anything beyond this would be direct savings of effort.

Improved Maintainability
Most functional changes need updates to the meta-models. For any global change that requires code modifications, only the

generic components are to be modified. For example, if a new filter criteria to be added to the Device Search functionality, it

needs to be added to the meta-model. If a change that requires position of form buttons to be aligned to the right in all forms,

then only one JSP needs to be changed, which in turn is applied to all functional units.

For any new enhancements, it requires only one such implementation and reuse across all functional units. For example, if the

search results are allowed to be exported as PDF and to be made available to all search functionality, the PDF rendering

component to be developed once. Then the feature is to be enabled through the meta-models.

Improved Resource Utilization
The effort from the actual developers of front-end or back-end components are limited to development of generic components.

If planned appropriately, the number of resources required can be reduced quickly and need not be kept until end of the project.

The recurring effort is limited to creation of functional meta-models for each functional unit. Anyone with good functional

understanding and with a brief training, can create the meta-models.

Other Benefits
 • There is no risk of binding yourself to a vendor or tool. The approach does not require any tools, other than those required

 for the project.

 • No deviations from the architecture are required. It is more of change in the design approach.

 • There is no additional learning required.

 • No investment on licensing cost, additional hardware

7Do it yourself Model Driven Development Mphasis

Mphasis Case Study
Mphasis Case Study
Mphasis has developed this concept as a framework called FlexiUtils. It also has Java-based implementation, that supports

Struts + Spring + Hibernate combination. This section describes case study of a project that uses FlexiUtils framework. The

focus of the case study mentioned below is towards the challenges and achievements and in relation to the subject of the

whitepaper.

The Client
The client is the world leader in home automation devices.

The Project
To enable Internet-based access to their home automation products from smart devices. There were two major sub-projects to

the solution. The Web Application and Messaging Server. The web application includes a self-service portal and an admin

portal. The messaging server is the one that allows communication between the smart devices and the automation devices.

The Technology
The web application uses Struts 2.x, Spring 3.x, Hibernate 3.x based architecture and uses RESTful web service for asynchro-

nous messaging.

The messaging server uses Netty 3.x-based NIO processing for high scalability and concurrency management. Hibernate is

used for data access.

Rest of the case study is with reference to the development of web application using FlexiUtil framework.

The challenges
 • Availability of the skilled resources

 • Duration of the project

 • Too many internal and external dependencies

 • Volatile requirements

How FlexiUtil framework helped:
1. The development of JSP files was limited to one Login page and one application page. They were ensured to comply with the

standards of the project. All screens were rendered using the meta-model. This includes form rendering, data rendering, report

rendering and anything related to the user interface. This drastically reduced the UI effort.

2. Only one Action was used to render the page. Asynchronous functionality provided through Spring Controllers.

3. At the beginning of development phase, the UI design was not available. The team started the development with dummy

screen layout and their own CSS. When the screens, style, branding is finalized, all we did was to transform the single JSP to

the new style. In about 8 hours of time, all the developed artifacts worked absolutely fine with the new screens.

4. When PDF generation, Spreadsheet generation capabilities were developed with similar approach and added to the project,

the features were available to all reports. Only the corresponding buttons were added to the meta-model. The changes to the

code being almost none.

5. The project functionality went through two major revisions in the first year after completion of the development. The team

turned it around in less than six weeks every time.

8Do it yourself Model Driven Development Mphasis

Conclusion
Bringing in Model-Driven Development approach does not always require additional tools. The core objective of separating

functional model and technical implementations can be achieved with change in design approach.

The functional requirements can be built as meta-models. The meta-models may include all the information needed for every

architectural layer.

The technical implementations are focused towards development of generic components, instead of developing one component

per functionality. They refer the meta-model for the functional behavior.

The approach helps in reducing the number of hand-coded components, thereby reducing the overall project effort. It also

improves the maintainability as applying a global change would be limited to generic components and adding a new generic

component can be used across the functional units. The approach also helps in better utilization of resources.

About the Author
Ananda Joshi is Architect Advanced as part of Enterprise Web Technologies practice, with

over 26 years of experience; 13 of which are with Mphasis. He has extensive experience in

architecting, design, and implementing the web applications of various complexity.

Developing reusable components is always his obsession. He has deep experience in

providing solution architecture and other pre-sales support activities for Application

Development and Maintenance projects. He also has experience in presales activities

of large scale application transition and long term maintenance of COTS products and

Custom Applications. His experience is around the business domains of Manufacturing,

Supply Chain and Logistics. Ananda can be reached at Ananda.Joshi@mphasis.com.

VA
S

 1
7/

01
/1

9
U

S
 L

E
TT

E
R

 M
M

For more information, contact: marketinginfo@mphasis.com
USA
460 Park Avenue South
Suite #1101
New York, NY 10016, USA
Tel.: +1 212 686 6655
Fax: +1 212 683 1690

Copyright © Mphasis Corporation. All rights reserved.

UK
88 Wood Street
London EC2V 7RS, UK
Tel.: +44 20 8528 1000
Fax: +44 20 8528 1001

INDIA
Bagmane World Technology Center
Marathahalli Ring Road
Doddanakundhi Village, Mahadevapura
Bangalore 560 048, India
Tel.: +91 80 3352 5000
Fax: +91 80 6695 9942

www.mphasis.com

About Mphasis
Mphasis applies next-generation technology to help enterprises transform businesses globally. Customer centricity is

foundational to Mphasis and is reflected in the Mphasis’ Front2Back™ Transformation approach. Front2Back™ uses the

exponential power of cloud and cognitive to provide hyper-personalized (C=X2C2
TM =1) digital experience to clients and their end

customers. Mphasis’ Service Transformation™ approach helps ‘shrink the core’ through the application of digital technologies

across legacy environments within an enterprise, enabling businesses to stay ahead in a changing world. Mphasis’ core

reference architectures and tools, speed and innovation with domain expertise and specialization are key to building strong

relationships with marquee clients.

