
Oracle Database:
In-Memory Solution

Shilpa Rajpurkar
DBA Lead Consultant – Oracle

Oracle Database In-Memory Solution
Oracle Database In-Memory is a suite of features, first introduced in Oracle Database 12c Release 1 (12.1.0.2), that greatly
improves performance for real-time analytics and mixed workloads. The In-Memory Column Store (IM column store) is the key
feature of Database In-Memory.

Analytic Application - Challenges and Solutions
Traditionally, obtaining good performance for analytic queries meant satisfying a number of requirements. You must understand
user access patterns. You must provide good performance, which typically requires creating indexes, materialized views, and
OLAP cubes.

For example, if you create few indexes for a table (primary key and foreign key indexes) to improve performance for an OLTP
application, additional indexes may be still required to provide good performance for analytic queries.

Additional access structures (indexes) cause performance overhead because you must create, manage, and tune them. For
example, inserting a single row into a table requires an update to all indexes on this table, which increases response time.

The demand for real-time analytics means that more analytic queries are being executed in a mixed-workload database.
The traditional approach is not sustainable.

Table OLTP Indexes Analytic Indexes

• Most Indexes in complex OLTP (e.g.
RP) databases are only used for
analytic queries

• Inserting one row into a table
requires updating 10-20 analytic
indexes: Slow!

• Indexes only speed up predictable
queries & reports

Table
1-3

OLLTP
Indexes

10-20
Analytic
Indexes

2Oracle Database: In-Memory Solution Mphasis

Row or Columnar Format
An Oracle database stores rows contiguously in data blocks. For example, in a table with three rows, an Oracle data block
stores the first row, followed by the second row, and then the third row. Each row contains all the column values for that
specific row. Data stored in row format is optimized for transaction processing.

To resolve performance issue relating to analytic queries, a columnar format was introduced. A columnar database stores
selected columns, not rows, contiguously. For example, in a large sales table, the sales IDs reside in one column, and sales
regions reside in a different column.

Analytical queries access few columns, but scan the entire data set. So, the columnar format is the most efficient one for
analytics. As columns are stored separately, an analytical query can access only required columns, and avoid reading
unnecessary data.

Database vendors typically force their customers to choose between a columnar and row-based format.

There is trade-off between the two formats, gaining the advantages of one format means losing the advantages of the other
alternate format. Applications either achieve rapid analytics or rapid transactions, but not both. So, there doesn’t exist as single
solution that solves the problem of mixed-use database.

Database In-Memory: Concept
The Database In-Memory feature includes the IM column store, advanced query optimizations, and availability solutions. These
features combine to speed up the analytic queries without sacrificing OLTP performance or availability.

In-Memory Column
Oracle Database In-Memory enables data to be simultaneously populated in memory in both row format (in the buffer cache)
and a new In-Memory column format. The Oracle Database query optimizer is fully aware of the column format: it automatically
routes analytic queries to the column format and OLTP operations to the row format, ensuring outstanding performance and
complete data consistency for all workloads without any application changes.

SALES

Memory

SALES
OLTP

Rows Format Column Format

SALES Analytics

Memory

Row

Column

Transactions run faster in row format
Row format is best for fast processing of few rows and many columns
Example: Insert or query on sales or order

Analytics run faster in row format
Column format is best for fast accessing of few columns and many rows
Example: Report sales totals by region

S
A

LE
S

S
A

LE
S

Database Storage: Row Format Versus Column Format

3Oracle Database: In-Memory Solution Mphasis

The database maintains full transactional consistency between the row and column formats, just as it maintains consistency
between tables and indexes. In this approach, there is only a single copy of the table in storage, so there are no additional
storage costs or synchronization issues.

INMEMORY clause is used in DDL statements to enable the IM column to be stored at any of the following levels:

• Column (non-virtual or virtual)

• Table, materialized view, or partition

• Tablespace

If the INMEMORY attribute is specified at the tablespace level, then by default all new tables and materialized views in the
tablespace are enabled for the IM column store. Here, row-based data on disk is automatically transformed into columnar
data in the IM column store. You can configure all, or a subset of a database object's columns for population in the IM column
store.

In-Memory Area
Database In-Memory uses an IM column store, which is a new component of the Oracle Database System Global Area (SGA),
called the In-Memory Area. The IM column store does not replace the buffer cache, but acts as a supplement, so data can
now be stored in memory in both a row and a column format.

The In-Memory area is sub-divided into two pools - a 1MB pool used to store the actual column formatted data populated into
memory, and a 64K pool used to store metadata about the objects that are populated into the IM column store.

The amount of available memory in each pool is visible in the V$INMEMORY_AREA view. The relative size of the two pools is
determined by internal heuristics; the majority of the In-Memory area memory is allocated to the 1MB pool.

Query to find Memory allocation

Select pool,alloc_bytes,used_bytes,populate_status from v$INMEMORY_AREA;

Architecture
To understand IN-Memory column store architecture, we will consider the example of sales table.

Given below is the visual representation of the Sales table that has 4 rows and 6 columns -

Below diagram shows the row representation of table. Each entry starts with rowid followed by values for each columns -

PROD ID CUST ID TIME ID STATE QTT AMOUNT

123 ABC 04/02 CA 12 3500

367 CDE 12/05 CA 1 2000

50 GHI 06/17 MI 5 4765

243 PQR 05/24 NY 9 1350

1 : 123, ABC, 04/02, CA, 12, 3500, - 2 : 367, CDE, 12/05, CA, 1, 2000 -
3 : 50, GHI, 06/17, MI, 5, 4765, 4 : 243, PQR, 05/24, NY, 9, 1350

ROW representationrowid

4Oracle Database: In-Memory Solution Mphasis

In columnar representation the way the data is stored is different from above. Each entry has the values from one column and
with each value there is a rowid for identifying the row that column value belongs to.

One of the advantages of this representation is the possibility to compress data. Row 1 and 2 has same value for state columns
i.e., ‘CA’. Below columnar representation compresses both values as shown in the circle.

The other advantage of this representation is vector processing using Single Instruction processing and Multiple Data value
(SIMD) processing.

This solution is simple to implement, requires no application changes and also supports all High Availability features.

123 : 1, 367 : 2, 50 : 3, 243 : 4 - ABC : 1, CDE : 2, GHI : 3, PQR : 4 -

04/02 : 1, 12/05, :2, 06/17 : 3, 05/24 : 4 - CA : 1 ;2, Mi : 3, NY : 4 -

12 : 1, 1 : 2, 5 : 3, 9 : 4 - 3500 : 1, 2000 : 2, 4765 : 3, 1350 : 4

Cloumnar representation

123 : 1, 367 : 2, 50 : 3, 243 : 4 - ABC : 1, CDE : 2, GHI : 3, PQR : 4 -

04/02 : 1, 12/05, : 2, 06/17 : 3, 05/24 : 4 - CA : 1 ; 2 , Mi : 3, NY : 4 -

12 : 1, 1 : 2, 5 : 3, 9 : 4 - 3500 : 1, 2000 : 2, 4765 : 3, 1350 : 4

Cloumnar representation

SELECT count (*) FROM sales WHERE state=‘CA’

SALES table

In-Memory
Column store

Compare All
Values in 1 cycle

State

CA
CA
MI
NY

CA
CA
NY
CA

CA

CA

CA

CA

CA

S
IM

D
R

eg
is

te
r

S
IM

D
R

eg
is

te
r

5Oracle Database: In-Memory Solution Mphasis

IM Column store is faster than scanning of row based data due to:

 • No buffer cache overhead: In IM columns store, data is not stored in data file it is purely available in, IN Memory columnar
format. No redo or physical read is generated.

 • Scanning is done only for the columns necessary for the query rather than entire row of data. Additionally, the database
uses storage indexes and an internal dictionary to read only the necessary IMCUs for a specific query. For example, if a
user request all sales for a state with a state ID in specific range, then the database can use IMCU pruning to eliminate
IMCUs that do not contain this value.

 • Here, compression improves the scanning process. The volume of data that the database must scan in the IM column
store is less than the corresponding volume in the database buffer cache.

Butter Cache

In-Memeory
Column Store

IN-MEMEORY_SIZE

DBW User IMCO SMCO

TX Journal

Only row format
or EHCC

Background Process
The IM column store is populated by a set of background processes referred to as worker processes (ora_w001_orcl). While this
occurs the database is fully available, however it is not the case with a pure in-memory database. Each worker process is given
a subset of database blocks from the object to populate into the IM column store. Population is a streaming mechanism, which
columnizes and compresses the data simultaneously. The IM column store is made up of multiple In-Memory Compression
Units (IMCUs) similar to extent in tablespace. Each worker process allocates its own IMCU and populates its subset of database
blocks in it. It is read in the same order as it appears in the row format, no sorting or ordering of data is done during population.

Objects are populated into the IM column store either in a prioritized list immediately after the database is opened or after they
are scanned (queried) for the first time. The order in which objects are populated is controlled by the keyword PRIORITY, which
has five levels. The default PRIORITY is NONE, which means an object is populated only after it is scanned for the first time.
All objects at a given priority level must be fully populated before the population for any objects at a lower priority level can
commence. However, the population order can be superseded if an object without a PRIORITY is scanned, triggering its
population into IM column store.

ALTER TABLE customers INMEMORY PRIORITY CRITICAL

6Oracle Database: In-Memory Solution Mphasis

Priority can be -

Critical: Object is populated immediately after the database is opened.

High: Object is populated after all CRITICAL objects have been populated, if space remains available in the IM column store.

Medium: Object is populated after all CRITICAL and HIGH objects have been populated, and space remains available in the IM
column store.

Low: Object is populated after all CRITICAL, HIGH, and MEDIUM objects have been populated, and if space remains available
in the IM column store.

None: Objects are only populated after they are scanned for the first time (Default), if space is available in the IM column store.

Limitation
Below objects and datatypes are not supported by this format:

 • Object owned by the SYS user and stored in the SYSTEM or SYSAUX tablespace

 • Index Organized Tables (IOTs)

 • Clustered Tables

 • LONGS (deprecated since Oracle Database 8i)

 • Out of line LOBS

Reference
https://www.oracle.com/database/database-in-memory/index.html

https://www.youtube.com/watch?v=IZ7UMoQxtLo

Author
Shilpa Rajpurkar
DBA Lead Consultant – Oracle

Shilpa Rajpurkar is an Oracle DBA. Now, working with Mphasis as DBA Lead consultant, since
Oct - 2009. She has total experience of 14 years in IT industry. She has worked in Insurance, Retail and
telecom domain. She is currently working on 12c and had worked on most of the version of oracle.

VA
S

 1
7/

01
/1

9
U

S
 L

E
TT

E
R

 M
M

For more information, contact: marketinginfo@mphasis.com
USA
460 Park Avenue South
Suite #1101
New York, NY 10016, USA
Tel.: +1 212 686 6655
Fax: +1 212 683 1690

Copyright © Mphasis Corporation. All rights reserved.

UK
88 Wood Street
London EC2V 7RS, UK
Tel.: +44 20 8528 1000
Fax: +44 20 8528 1001

INDIA
Bagmane World Technology Center
Marathahalli Ring Road
Doddanakundhi Village, Mahadevapura
Bangalore 560 048, India
Tel.: +91 80 3352 5000
Fax: +91 80 6695 9942

www.mphasis.com

About Mphasis
Mphasis applies next-generation technology to help enterprises transform businesses globally. Customer centricity is

foundational to Mphasis and is reflected in the Mphasis’ Front2Back™ Transformation approach. Front2Back™ uses the

exponential power of cloud and cognitive to provide hyper-personalized (C=X2C2
TM =1) digital experience to clients and their end

customers. Mphasis’ Service Transformation™ approach helps ‘shrink the core’ through the application of digital technologies

across legacy environments within an enterprise, enabling businesses to stay ahead in a changing world. Mphasis’ core

reference architectures and tools, speed and innovation with domain expertise and specialization are key to building strong

relationships with marquee clients.

