
1Future of .NET - .NET on Non-Windows Platforms Mphasis

Future of .NET - .NET on Non-Windows Platforms

A PoV by
Aniruddha Chakrabarti

AVP Digital, Mphasis

2Future of .NET - .NET on Non-Windows Platforms Mphasis

compatible. Microsoft had released the source code of many
components of .NET including ASP.NET and Entity Frameworks
some years ago, but with .NET 5.0 Microsoft .NET’s team has

completely morphed into an open source community driven culture.

The entire codebase is developed openly on GitHub jointly by

Microsoft developers and the community.

Overview

For over a decade now, .NET has been one of the popular platforms
for building large-scale distributed applications in enterprise and
consumer space. Along with Java/JEE it has dominated enterprise
application development. To this day, it has been one of the most
popular stacks for building web apps (ASP.NET), mobile apps
(Windows Phones, Xamarin), cloud apps (Azure), desktop/smart
client apps (Windows Store apps, WPF, and Windows Forms), and
apps for Xbox, Kinect etc. Over the years, it has changed itself
significantly adding new capabilities and redesigning some of its
existing capabilities.

One of the biggest challenges that .NET has faced for even wider
adoption is its dependency on Windows. When Microsoft planned
.NET in 2000/2001, the world was different – Microsoft purposefully
took a dependency on their popular Windows operating system.
With the upcoming .NET 5.0 (probable release in 2016), Microsoft
has taken a big bet on making .NET open source and cross-platform

.NET 5.0 would have two flavors:

•	 A full-fledged .NET Framework 5.0, which would be running
only on Windows

•	 A slim-lined, relatively small, and optimized version of .NET
called .NET Core 5.0 which would be running on Linux,
OS X, and Windows. .NET Core is a subset of the full .NET
Framework and not all features of the full .NET Framework is
available on .NET Core

.NET Core (Subset)

.NET Framework (Full)

Figure 1 – .NET Framework vs .NET Core in .NET 5.0

One of the biggest challenges that .NET
has faced for even wider adoption is its

dependency on Windows.

Microsoft has changed their strategy significantly over last couple of years towards the Non-Microsoft world. Microsoft
understands and acknowledges the fact that within a large enterprise there would be Non-Microsoft software including
various Linux flavors as Server OS, Mac laptops and desktops, Android and Apple Phones, Java, Python, Node, and other
languages and stacks.

•	 Azure supports many Linux distros including Ubuntu, CentOS, CoreOS, Oracle Linux, SUSE and latest RHEL

•	 Azure supports Non-SQL Server databases including Oracle, MongoDB, Redis

•	 Azure supports running Java, Python, Ruby and Node server side apps. Azure client
libraries are available in Java, Python, Ruby and Node, apart from .NET

•	 Micrsoft Office, for long had a version for Mac. Now Microsoft Office is available for Android and iOS devices as well

The move to create a smaller version of .NET for Non-Windows platforms including Linux and OS X is a major step in
Microsoft’s move towards a polygot world.

3Future of .NET - .NET on Non-Windows Platforms Mphasis

WPF Windows
Forms

ASP.NET 4.6 WPF Workflow
Foundation

Silverlight

Collections Reflection Threading
 & Tasks

Networking
& Socket

LINQ IO

Security
Crypto-
graphy PLINQ SerializationXML

Regular
 Expression

BCL / Libraries (Base Class Libraries)

CLR
(Common
Language
Runtime)

.NET Framework
Full featured and integrated .NET libraries and runtimes Supported platform – Windows only

Common Runtime
JIT Compiler

GC (Garbage Collector)

Compiler
.NET Compiler Service (“Roslyn”)

Languages (C#, VB, F#)

.NET story – .NET version 4.6 (till circa 2015)

.NET Framework

.NET Framework consists of:

CLR (Common Language Runtime)
CLR or Common Language Runtime is a virtual machine that provides
a run-time environment to run the code, and provides services that
make the development process easier. CLR is similar to JVM or Java
Virtual Machine. Just the way JVM supports multiple languages like
Java, Scala, Clojure, etc. CLR supports multiple languages like C#,
VB, F#, IronPython (Python implementation running on .NET), etc.

BCL (Base Class Library)
BCL or Base Class Library is a runtime library, which provides access
to system functionality including IO, Threading, File Access, Data
Access, Reflection, Serialization, Networking, Security, LINQ, etc.
It is the foundation on which .NET Framework applications,
components, and controls are built. It’s also called as
.NET Framework Class Library or FCL.

Figure 2 – Full-fledged .NET Framework on Windows

.NET story – .NET 5.0 (circa 2015 onward)

Figure 3 – Different Components of .NET Framework vs .NET Core

WPF Windows
Forms

ASP.NET
 4.6 ASP.NET 5.0 Future

Component
Future

Component

DN
X

(.N
ET

 E
xe

cu
tio

n
En

vi
ro

nm
en

t)

Runtime
JIT Compiler, GC

Next Gen JIT (“RyuJIT”)

Compiler
.NET Compiler Service (“Roslyn”)

Languages (C#, VB, F#)
LLILC Compiler (based on LLVM)

Shared Libraries
NuGet Packages

Common

Core CLR
(Common Language
Runtime)

Core FX / Libraries
(Core Base Class Libraries)

.NET Core (Subset)
Open source, cross platform, modular and optimized subset of

.NET libraries and runtimes
Supported platform – Linux, OS X and Windows

CLR

Runtime)

BCL / Libraries
(Base Class

Libraries)

.NET Framework (Full)
Full featured and integrated .NET libraries

and runtimes
Supported Platform – Windows only

(Common Language

4Future of .NET - .NET on Non-Windows Platforms Mphasis

.NET Core

.NET Core is a cross platform implementation of .NET
implemented by Microsoft. .NET Core is a streamlined and
relatively small subset of the larger .NET Framework (that was
available until now only on Windows). .NET Core is modularized
and is available as hundreds of individually deployable NuGet
packages. .NET Core packages could be installed from the NuGet
repository.

Currently .NET Core is primarily driven so that ASP.NET can run
on Linux and OS X apart from Windows. Currently .NET Core
supports ASP.NET 5.0, simple Console apps, and Windows 10
UWP (Universal Windows Platform) apps.

Universal Windows Platform provides a common universal set of
runtime APIs for devices running Windows 10 including Windows
Store App running on PC and tablets, Windows Phone Apps
running on Windows Phone, Xbox Apps, and Surface Apps.
This is possible as different Windows 10 flavors running on these
difference device types share a common core. With this evolution,
apps that target the UWP can call not only the WinRT APIs that are
common to all devices, but also APIs (including Win32 and .NET
APIs) that are specific to the device family the app is running on.
The UWP provides a guaranteed core API layer across devices.

.NET Core Libraries are not installed in GAC
(.NET Framework Libraries are installed in GAC) – instead .NET Core
Libraries are installed in a single subfolder under the ‘Users’ folder
which means that it does not require admin rights. .NET Core install
does not use Windows registry.

There could be multiple versions of DNX or .NET Execution
Environments or .NET versions in a machine.

Currently .NET Core is primarily driven so that
 ASP.NET can run on Linux and

OS X apart from Windows.

.NET Core consists of:

Core CLR
Core CLR is a subset of the larger CLR or Common Language
Runtime. It is cross-platform, with multiple OS and CPU ports.
It includes the garbage collector, JIT compiler, base .NET data
types, and many low-level classes.

Core FX
Core FX is a stripped down subset of larger BCL or Base Class
Libraries for .NET Core. It includes classes for collections, file
systems, console, XML, async, and many other components of
BCL. Since Core FX is a slimmed optimized version of full BCL
that could be ported to Linux and OS X, all APIs of BCL are not
present in Core FX.

All of the .NET Core libraries are distributed as NuGet packages.
These NuGet Packages could be installed easily within Visual
Studio or with one of the NuGet clients directly.

Figure 4 – CLR & BCL vs. Core CLR & Core FX in .NET 5.0

Figure 4b – .NET Core Libraries in “Users” folder.

Core CLR
(Common Language Runtime)

Core FX / Libraries
(Core Base Class Libraries)

.NET Core (Subset)

BCL / Libraries
(Base Class Libraries)

CLR
(Common Language Runtime)

.NET Framework (Full)

Figure 4a – .NET Core Libraries in “Users” folder

Next Gen JIT (“RyuJIT”)

RyuJIT is Microsoft’s next gen 64 bit just in time (JIT) compiler
for .NET. According to the performance analysis done by .Net
runtime team, the new next-generation X64 RyuJIT compiler is
twice as fast compared to the older X64 compiler. This means
apps compiled with RyuJIT will deliver up to 30% faster start up.
RyuJIT was released by Microsoft along with .NET 4.6 release
and it forms a core part of .NET 5.0 as well.

5Future of .NET - .NET on Non-Windows Platforms Mphasis

.NET Compiler Service (“Roslyn”)

Roslyn is an open source compiler for C# and VB with rich code
analysis APIs. Microsoft developed Roslyn from ground up and
redesigned both C# and VB compilers to use services provided
by Roslyn. Typically, older generation compilers are complete
black boxes, and IDEs or other tools cannot use them as services.
Roslyn exposes its functionality as services, which could be easily
consumed by IDEs and other tools (code analysis tools for example).

LLILC Compiler

LLILC (pronounced as ‘lilac’) is an LLVM based MSIL Compiler
for .NET Core. It includes a set of cross-platform .NET code
generation tools that enables compilation of MSIL byte code to
LLVM supported platforms.

LLVM is a very popular open source compiler platform. LLVM was
originally implemented for C and C++. Later it gained widespread
popularity and used by many language compilers including
Common Lisp, Ada, D, Fortran, Go, Haskell, Java bytecode, Julia,
Objective-C, Swift, Python, R, Ruby, Rust, Scala, and Lua.

LLILC creates a bridge into LLVM for .NET, making LLVM’s broad
chip support and tools available to .NET Core.

ASP.NET 5.0

ASP.NET 5.0 is the cross platform version of ASP.NET that runs
on Windows, Linux, OS X, and any other .NET Core platforms.
It’s the latest version of several ASP.NET technologies, including
ASP.NET MVC and Web API (Web Forms are not supported in
ASP.NET 5.0)

Until 4.6, ASP.NET was supported only on Windows. Microsoft
took the dependency on Windows long back when ASP.NET was
first designed back in 2000-01.

Now with the changed scenario, Microsoft wanted to enable
running ASP.NET on Non-Windows platforms including Linux
distros and OS X with ASP.NET 5, an ASP.NET website/webapp
could be deployed on Linux and OS X servers that would open
up many scenarios.

New .NET 5.0 Command Line Tools

DNVM: DNVM or .NET Version Manager helps in installing and
managing the versions of .NET runtimes or DNX
(.NET Execution Environments) installed on a machine.

DNVM is similar to utilities like NVM (Node Version Manager) and
RVM (Ruby Version Manager) that helps in managing and installing
versions of Node and Ruby respectively.

Figure 5 – DNVM Command Line Utility

DNVM could be used to list all the .NET versions or DNX installed
(use DNVM list command). As shown below, there could be
multiple versions of .NET runtime installed with one of them
being the default.

Figure 6 – DNVM list showing versions of DNX / .NET runtimes installed

To change to a different version –
C:\Users\aniruddha.c>dnvm use -r coreclr -arch

x64 1.0.0-rc2-16128

Adding C:\Users\aniruddha.c\.dnx\runtimes\dnx-

coreclr-win-x64.1.0.0-rc2-16128\bin to process

PATH

.NET Core is a .NET Foundation project.
Microsoft created .NET Foundation in 2014 to

foster open development and collaboration
around the growing collection of open source
projects for .NET – it’s an independent forum

driven by the community and Microsoft.

.NET Foundation owns and drives many other
open source .NET projects apart from

.NET Core including ASP.NET 5, .NET Compiler
Platform (“Roslyn”), Entity Framework, ASP.NET
MVC, Web API, ASP.NET SignalR, WCF, MSBuild
and NuGet. Projects owned by .NET Foundation

are open source and licensed under an open
source license model.

6Future of .NET - .NET on Non-Windows Platforms Mphasis

New .NET 5.0 UI Tools

Visual Studio Code

Microsoft created a lightweight cross platform
editor that supports Windows, Linux, and
OS X. On Windows, developers could use the
Visual Studio Community Edition that is the free
version of the Visual Studio IDE. But on Linux
and OS X, developers could use the Visual
Studio Code which is free. Apart from Visual

Studio Code, other editors like Sublime, Atom, Bracket or Vim
could be used.

Figure 9 – Visual Studio Code

OmniSharp

OmniSharp is a community driven open
source project created to improve the
development experience of .NET 5.0
especially on Non-Windows platforms
and in third-party editors like Sublime
Text. It’s a set of tools, editor integrations
and libraries for developing in .NET.
OmniSharp works with a number of
lightweight editors including Sublime Text,

Atom, Brackets, Emacs, and Vim. Microsoft’s new Visual Studio
Code editor also uses OmniSharp.

Generator-ASP.NET

Yeoman is a scaffolding platform built on
top of Node.js that allows you to build
template-based generators for projects or
code files. generator-aspnet is a yeoman
generator that allows you to scaffold
ASP.NET 5 applications.

Figure 7 – Changing the default DNX version

To install the latest version of .NET Core use

D:\Work\Play\dotNetCore>dnvm upgrade -r coreclr

To install the latest version of full .NET Framework use

D:\Work\Play\dotNetCore>dnvm upgrade -r clr

DNVM installed the newly released (November 2015)
.NET 5.0 RC1 and made it the default.

DNX: DNX or .NET Execution Environment software development
kit (SDK) and runtime environment, which contains everything
required to build and run .NET applications for Windows,
Mac, and Linux.

Figure 7a – Changing the default DNX version

DNU: DNU or .NET Development Utilities provides a variety of
utility functions to assist with development in .NET Core and
ASP.NET 5. Most commonly, DNU is used to install and manage
library packages in a .NET Core app. It’s also used to package
and publish a .NET Core application. DNU uses NuGet behind the
scenes for package management and deployment.

New .NET 5.0 Project System

.NET 5.0 and ASP.NET 5.0 introduces a new lightweight project
system. Until .NET 4.6, .NET used MSBuild based project system.
MSBuild uses XML files for defining projects – for example C#
projects uses .csproj files which are XML files that define a project.

Figure 8 – project.json file structure used by .NET Core projects

.NET 5.0 introduces a more agile JSON based project system
– project files are actually JSON files (project.json) that
describes the project, .NET Framework version that it uses, the
dependencies etc. project. json structure is similar to the project
files used by NPM (Node Package Manager), Grunt or Gulp.

The future of .NET lies in successfully running it on
Non-Windows platforms, modularizing it fully and
developing it openly along with the community.

7Future of .NET - .NET on Non-Windows Platforms Mphasis

Conclusion

The future of .NET lies in successfully running it on Non-Windows
platforms, modularizing it fully and developing it openly along with
the community. Currently .NET Core only enables ASP.NET 5.0
apps, simple console apps and Windows 10 WUP apps, but we
believe that in the future, Microsoft would enable other workloads.
It would be not be surprising if .NET components like WCF
(Windows Communication Foundation) and WF (Workflow
Foundation) are the next set of things to be ported on to
non-Windows platforms. Being able to run .NET on Non-Windows
platforms would open up many possibilities for Microsoft and
large enterprises who have made significant investment for .NET.

Note: As the time this POV was published, Microsoft announced
that .NET Core 5.0 would be called .NET Core 1.0 and ASP.NET
Core 5.0 would be called ASP.NET Core 1.0. The primary reason
behind this decision is .NET Core and ASP.NET Core is not
backward compatible and introduces many new ideas.
.NET Core is not compatible with .NET 4.6 and hence it’s better to
call it as .NET Core 1.0 so that developers and architects do not
confuse .NET Core with full-fledged .NET 4.6 Framework.

Further Reading

•	 .NET Framework https://msdn.microsoft.com/en-us/vstudio/aa496123

•	 CLR https://msdn.microsoft.com/en-us/library/8bs2ecf4(v=vs.110).aspx

•	 BCL https://msdn.microsoft.com/en-us/library/gg145045(v=vs.110).aspx

•	 .NET Core https://dotnet.github.io/

•	 Core CLR https://github.com/dotnet/coreclr

•	 Core FX https://github.com/dotnet/corefx

•	 .NET Core Documentation http://dotnet.readthedocs.org/en/latest/

•	 .NET 4.6 Release http://blogs.msdn.com/b/dotnet/archive/2015/07/20/announcing-net-framework-4-6.aspx

•	 Roslyn https://github.com/dotnet/roslyn

•	 ASP.NET http://asp.net/vnext

•	 ASP.NET 5.0 RC (Release Candidate) https://get.asp.net/

•	 .NET Foundation http://www.dotnetfoundation.org/

•	 .NET Core 1.0 and
ASP.NET Core 1.0 Announcement http://www.hanselman.com/blog/ASPNET5IsDeadIntroducingASPNETCore10AndNETCore10.aspx

Copyright ©: Third party product and brand names mentioned in this POV (.NET, Microsoft, OS X, Apple, Linux, Xamarin) belong to their respective owners.

https://msdn.microsoft.com/en-us/vstudio/aa496123
https://msdn.microsoft.com/en-us/library/8bs2ecf4(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/gg145045(v=vs.110).aspx
https://dotnet.github.io/
https://github.com/dotnet/coreclr
https://github.com/dotnet/corefx
http://dotnet.readthedocs.org/en/latest/
http://dotnet.readthedocs.org/en/latest/
https://github.com/dotnet/roslyn
http://asp.net/vnext
https://get.asp.net/
http://www.dotnetfoundation.org/
http://www.hanselman.com/blog/ASPNET5IsDeadIntroducingASPNETCore10AndNETCore10.aspx

8Future of .NET - .NET on Non-Windows Platforms Mphasis

VA
S

 2
9/

02
/1

6
U

S
 L

E
TT

E
R

 B
A

S
IL

 3
82

4

For more information, contact: marketinginfo@mphasis.com
USA
460 Park Avenue South
Suite #1101
New York, NY 10016, USA
Tel.: +1 212 686 6655
Fax: +1 212 683 1690

Copyright © Mphasis Corporation. All rights reserved.

UK
88 Wood Street
London EC2V 7RS, UK
Tel.: +44 20 8528 1000
Fax: +44 20 8528 1001

INDIA
Bagmane World Technology Center
Marathahalli Ring Road
Doddanakundhi Village, Mahadevapura
Bangalore 560 048, India
Tel.: +91 80 3352 5000
Fax: +91 80 6695 9942

About Mphasis
Mphasis is a global Technology Services and Solutions company specializing in the areas of Digital and Governance, Risk & Compliance. Our solution
focus and superior human capital propels our partnership with large enterprise customers in their Digital Transformation journeys and with global
financial institutions in the conception and execution of their Governance, Risk and Compliance Strategies. We focus on next generation technologies for
differentiated solutions delivering optimized operations for clients.

www.mphasis.com

Aniruddha Chakrabarti
Associate Vice President, Digital, Mphasis

Aniruddha has 16+ years of IT experience spread across systems integration,
technology consulting, IT outsourcing and product development.
He has extensive experience of delivery leadership, solution architecture,
presales, technology architecture and program management of large scale
distributed systems.

As AVP, Digital in Mphasis Aniruddha is responsible for Presales, Solutions,
RFP/RFI and Capability Development of Digital Practice. Before as
Sr. Manager & Sr. Principal Architect in Accenture, he led architecture and
large delivery teams. He had played delivery leadership and architecture
focused roles in Microsoft, Target, Misys and Cognizant.

His interests include digital, cloud, mobility, IoT, distributed systems, web,
open source, .NET, Java, programming languages and NoSQL. His industry
experience spans Retail, Healthcare, Capital Markets, Insurance, Travel,
Hospitality, Pharma and Medical Technology.

