
1A whitepaper on software testing metrics

Software Testing Metrics
Driving Testing Services Performance

 Whitepaper by:
Santosh Subramanian

Testing Services Solution Architect

2A whitepaper on software testing metrics

Contents
Abstract .. 3

Introduction .. 3

Metrics Usage Patterns .. 4

Testing Metrics ... 4

Setting Up A Metrics Program ... 9

Conclusion ... 11

References ... 11

3A whitepaper on software testing metrics

Abstract
The current decade is all about how we collect data and how we leverage to better know our customers,
our competitors, the geo-political-cultural environment, etc. This focus on data has had a subliminal impact
on IT organizations as well and we find an increasing focus on gathering information, mining it, analyzing it,
and leveraging it to make strategic decisions on improving their service delivery performance. Consequently,
senior executives pivot to their Testing Services organization to see how best they can leverage the data
collected on the quality of delivered software, the testing efficiency & effectiveness, and the quality of the
software development process.

This white paper discusses different software testing metrics, key attributes of these metrics, and how any
organization can setup a good measurement program to facilitate effective decision-making.

When you can measure what you are speaking about, and express it in numbers, you know something about it; but when you
cannot measure it, when you cannot express it in numbers, your knowledge is of a meagre and unsatisfactory kind
- Lord Kelvin (19 century mathematical physicist and engineer)

As depicted above, a good set of software metrics can provide detailed insight into the quality of a product/
service (i.e. the effectiveness) as well as efficiency of the process delivering the product/service. It also provides
historical data to leverage so that to make your delivery process more predictable and your estimates reliable.
The discussion of software testing metrics will be incomplete if we just mention the different types of metrics
and not discuss the different factors that influence or influenced by the metrics.

For example, one of the biggest challenges IT organizations face is to get to predictable software delivery. Good
metrics can not only provide the team with solid heuristics to rely on and leverage it to develop estimates, but
also compare its progress against benchmarks and course correct the project at an early stage.

In the following sections we will first discuss the different usage categories for metrics. Following that, will be
the key software testing metrics that should be part of any testing organization metrics program. Lastly, we will
discuss how we go about building a good measurement program.

It is critically important to mention that this paper does not detail out every software testing metric. While it
touches up on a few commonly used and relevant testing metrics (based on author’s experience), it intends to
provide the reader with a good starting point to start measuring quality of his/her organization’s software quality.

Introduction

Efficiency

ScheduleEffectiveness

Test Automation,
Reusability, Test
Effort Distribution

Test Management,
Test Estimation,
Test Planning

Process, Domain
Expertise, Requirement
Analysis & Test Design

Types of Testing Metrics & Influencing Factors

Software
Testing Metrics

4A whitepaper on software testing metrics

Metrics Usage Patterns
Before we delve into different software testing metrics,
their calculation rules, and their purpose, it is very
important to understand the broad usage patterns that
each of these metrics will fall into.

Lead/Lag Indicators

More often than not we try to use the number of defects
raised or the number of test cases passed, as a measure
of application software quality. It helps when we
discuss the current status and progress of application
development, but they offer minimal help in preventing
defects or accelerating the testing process. This is where
lead indicators come into play.

Lead indicators measure activities that have an impact on
future performance of a testing services organization.
On projects Lead indicators are focused on defect
prevention rather than defect detection. Examples of lead
indicators are:

− Testing effort spent in requirements and design review;
− Effort spent in peer review of test cases

Point-in-Time/Trending Metrics

Point-in-time metrics enable organizations and project
teams take stock of where they are in terms of the plan
and make necessary adjustments so as to meet the
required objectives of the project/program. Typically,
such metrics are used to communicate the status of a
project or program.

Trending metrics on the other hand help us understand
the patterns of successes or failures, strengths or
weaknesses and enable the organization or project
team to react accordingly. To measure performance of
the testing organization we would be focusing more on
trending metrics.

Software Quality Assurance/Quality Control Metrics

Just so as to be clear, Quality Assurance focusses on
having the right processes in place so that quality is built
into development of the software product. Quality Control
focusses on ensuring that the developed product meets
the expected quality objectives.

Organizations should typically focus on Quality
Assurance metrics so that they can take the steps to
bring about process improvements across the SDLC
while project teams focus on Quality Control metrics, will
enable them to focus efforts to deliver a quality product.

Testing Metrics
When we discuss testing metrics, it is critically important
to address the different tiers at which the metrics gets
reported and the impact that it has on that tier. Typically
these tiers are Organization, Business Unit, and Project.

This tiered approach to metrics development will enable
the testing organization to deliver metrics across the IT
organization. The organizational level metrics will enable
Sr. Executives take up strategic decisions to improve the
overall IT organization’s software delivery capability. At
a business unit level, it enables Sr. Managers to identify
risks and/or issues using the combination of status and
trend metrics and take corrective action. Each testing
team with the help of the detail metrics can not only find
out where testing is lacking, but also how they can help
the overall team identify defects early or even prevent
defect injection.

Organization Level Metrics

These metrics cut across all the testing team in the
organization and will offer Sr. Executives a clear
perspective on the quality of deliverables output by their
IT organization. In addition, trend metrics will enable
Sr. Executives to recognize how effective their organization is.

• Software stability trends
The metrics within this category reflect the number
of quality issues that have been experienced within
its portfolio of applications. An upward trend over a
period of time or a high number over a period of time
is indicative of widespread issues within the testing
organization and/or within the IT organization. It is an
error to treat these metrics as issues to be resolved,
rather it is important to understand the root cause(/s)
and develop a plan to address them. Some of the
metrics that will be included in this category are:

− No. Of production defects reported
− System outages/downtime
− Post release customer feedback

• Operating cost trends
It is important to review operating cost trends
individually from CapEx as a high operating budget
might be indicative of non-optimal resource utilization
and/or increasing amount of effort being expended
on Business As Usual (BAU) testing or heavy expense
towards testing tools. Such trends suggest for an
assessment of the BAU testing portfolio and identify
efficiency opportunities. Some of metrics to be
included in this category are:

Lead indicators, trending
metrics, and quality

assurance are some of
the initial touchpoints.

Understanding their position
is critical to understand

testing metrics.

Understanding the
tiered approach and

implementing it is the
best approach for
testing metrics.

5A whitepaper on software testing metrics

− Manpower cost trends (operational vs. Capex)

− Manpower cost trends (full-time vs. Temporary staff)
− Licensing cost trends
− Testing infrastructure cost trends
− Ratio of testing budget against overall it budget
− Testing cost per defect

• Reusability metrics
This metrics is typically not given the attention that it
deserves at an organizational level. Primarily because
in most cases each individual business unit is at its
own level of maturity, there are independently operated,
and technology sharing typically is at a low unless it is
mandated from the top-down. Metrics included in this
category are:

− Effort savings through asset reuse
− Time-to-market reduction

Business Unit Level Metrics

These are metrics that go across different testing teams
and will enable executives and/or managers to see trends
and accordingly take action that will have a mid-to-long
term impact on the testing organization.

• Test effectiveness trends
These trend metrics will let the Program/Business Unit/
Departmental managers know whether the testing
organization is effective in defect identification. More
importantly, it will also help in determining how late
in the testing life cycle were these defects detected.
Some of metrics included in this category are:

− Defect removal efficiency
− Test coverage
− Defect injection rate

• Test efficiency trends
These metrics will help the testing organization
determine if it can optimize the cost of testing and the
time-to-market. Some of the metrics that will help here
are:

− Mean time to detect
− Defect density
− Test case design/execution productivity

• Schedule variance trends
These metrics will help the testing organization
determine if there are challenges with either the
estimation for the Testing effort, or the testing planning
exercise, or with other factors such as build planning,
environment issues, etc.

− Schedule variance
− Effort variance
− Mean time to repair

• Test automation metrics
It is challenging for departmental managers to see
why they are continuing to incur automation costs
for application that have been already delivered to
production or in case of new development, why the
investment in automation is not yielding benefits in

terms of reduced cost of testing. A combination of
these metrics should enable the testing organization
make a strong case of continuous commitment to test
automation.

− Automation testing test coverage
− Automated test development productivity
− Automation maintenance effort
− Automation ROI

• Capability Metrics
It is important for any Business Unit to understand the
true capabilities of the team. It is critically important
to give some thought to this metrics, in terms of how
well does it align with the objectives and needs of the
organization and business unit.

− Certifications metrics
− Resource skill index
− Resource fulfillment index

Project Level Metrics

Typically, individual testers within a team are so down in
the trenches that they fail to see the big picture. These
metrics when presented along with a snapshot of where
the project is against the plan, should provide every tester
a clear perspective on the state of project.

Status metrics may hide the true state of the project, as
they represent a point-in-time picture and how it track
against plan. However, in combination with these metrics,
testing team members can truly assess the Qualitative
state of the project. Some of the metrics included in this
category are:

Test Effectiveness

• Code coverage

• Defect detection efficiency

• Defect acceptance ratio

• Exploratory testing effectiveness

Test Efficiency

• Test case design/execution productivity

• Automated test development productivity

• Defect aging

• Time distribution metrics

Schedule

• Effort variance

• Change request effort ratio

When we talk about project-level metrics, it is also
important to align the metrics to the development
methodology such as Agile, Waterfall, or Iterative. The
above list of metrics spans across these methodologies
and should be augmented with metrics specific for the
project.

6A whitepaper on software testing metrics

Metrics Explained

The below table provides a brief on each of the metrics referred to above along with an explanation of how each is
calculated:

Metrics Brief Description Calculation Logic
No. of production defects
reported

Count of defects reported
in production by severity
month over month (MoM)

Not applicable

System outages/
down time

No. of outages by
application MoM

Not applicable

Cost of system outage/
downtime

Cost to business due to
downtime + cost of effort
spent in restoring
application

Customer acceptance
index

A measure of feedback
from the user community

Testing infrastructure cost
trends

Cost of all environments
(dev, test, UAT, PreProd,
etc.) By application area
QoQ

Not applicable

Ratio of testing budget
against overall it budget

A trend of the ratio of
overall testing budget
against overall it spend

Testing cost per defect This essentially indicates
how efficient is the testing
team operating in terms of
identifying defects.
This metric in conjunction
with the defect detection
efficiency (DDE –
discussed below) indicates
how effective the testing
team is.

Overall cost of testing
during a given period/# of
defects identified by the
testing team during that
same period

Time-to-market reduction It is the length of time it
takes from a product
being conceived until it is
released to production

Time in weeks/months
saved on a project/
program by using the asset

Defect removal efficiency % Indicating if testing
team was efficient in
controlling defect leakage
within a testing phase

(DFiP/(DFiP + DFaP)) * 100
Where
DFiP= Defect detected &
fixed in a SDLC phase
DFaP = SDLC phase
Defect detected beyond
the SDLC phase

7A whitepaper on software testing metrics

Metrics Brief Description Calculation Logic

Test coverage % of requirements that
were tested within a
testing phase

(No. of requirements
traced back for all test
cases executed and
passed)/(total no. Of
requirements specified) *
100

Defect injection rate Rate at which new defects
are introduced into the
system

No. of defects accepted/
(total # of development
hours & test execution
hours spent)

Mean time to detect Determines the time that
it takes for testing team to
identify a defect

No. of defects accepted/
(total # of test execution
hours spent)

Defect density Communicates how many
defects were identified in
relation to the size of the
application

No. of accepted defects/
size of the application

Test case design/
execution productivity

Number of test cases
developed per person hour
of effort

No. of test case
developed/(effort spent on
test case development)

Test case design/
execution productivity

Number of test cases
executed per person
hour of effort

No. of test case executed/
(effort spent on test case
execution)

Automated test
development productivity

Number of test scripts
developed per person hour
of effort

No. of test scripts
developed/(effort spent on
test script development)

Automation maintenance
effort

Number of hours
expended towards
changing existing test
scripts over a period

Not applicable

Automation ROI Iindicates if the investment
in automation is worth the
cost savings that have
been achieved due to
automation. If
ROI = 1 – indicates no
savings
ROI > 1 – indicates
benefit in automating the
test suite
ROI < 1 – indicates no
value in automating the
test suite.

(Cost for manual test suite
execution – cost for
automated test suite
execution)/(cost of
automation suite
development + cost
of license + cost of
automation suite
maintenance + cost of
execution)

8A whitepaper on software testing metrics

Metrics Brief Description Calculation Logic

Code coverage Typically created as part of
unit testing, is a measure
of how extensively is the
developed code tested

Not applicable

Defect detection
efficiency

% of total # of defects
reported

No. of accepted defects
found during testing state/
(no. of accepted defects
found during testing stage
+ No. of accepted defects
after testing stage) * 100

Exploratory testing
effectiveness

Exploratory testing
efficiency is the percentage
of defects detected in
exploratory testing to the
total defects detected in
the test phase

Defects detected in
exploratory testing /total
number defects detected
in manual, automated and
exploratory testing

Time distribution metrics This can give great insight
on how changes in the
testing process affects the
test projects. If we have to
carve out a pie chart from
breakdown of total time in
testing cycle, we can get
good insight into where
most of time is spent and
correct.

Defect acceptance ratio Percentage of defects
reported and accepted as
valid defects

(No. of accepted defects
found during testing state/
(no. of defects reported
during testing stage))* 100

Effort variance % Difference between
actual testing effort and
estimated testing effort,
expressed as a % of actual
testing effort

((Actual testing effort –
estimated testing effort)/
actual testing effort)*100

Change request effort
ratio

Goal is to evaluate
requirements stability and
accordingly take actions to
improve quality of prod/
requirements documentation

Actual effort on changes/
total actual efforts in a
testing project

Defect aging Duration in days or weeks
for how long a defect is
open i.e. From the time the
defect was reported until
the defect has been fixed

(Date defect fixed – date
defect reported)/s

9A whitepaper on software testing metrics

Setting Up a Metrics Program
It is common industry practice to setup a metrics program based on the GQM (Goals – Question – Metric) paradigm by
Victor Basili. The objective of the methodology is to have at a conceptual level the objectives that organization is trying to
achieve; then develop a list of questions that can be evaluated against those goals; that will essentially lead to the
operational data sets (measures) that can help answer those questions.

The below figure graphically represent an approach that we recommend to setup a metrics program for any testing
organization.

Develop Metrics
Program

Implementation
Plan

Identify
Measures

Implement
Metrics

Establish
Organizational

Goals

Setup Review &
Refine Process

Analyze Current
State

Approach for Metrics
Program Setup

Driving Testing
Services

Performance
requires a formal

approach to setting
up a metrics

program

10A whitepaper on software testing metrics

Analyze Current State

Any implementation program that does not take into
consideration the current state is working outside of
context and is expected to have significant challenges in
shifting the organizational mindset required to operate a
successful metrics program. The current state analysis
would include:

• Understanding the current testing process
• Gathering information on the testing tools available

and used
• Listing the current set of metrics data captured

Establish Organizational Goals

Understanding the business objectives of establishing a
metrics program would enable the team to develop the
right set of measures. These goals can be broad and
generic or be specific to start with. To develop a Software
Testing Metrics program, it is important at this stage to
translate these into a set of goals that is influenced/
controlled by the testing organization. Some examples of
such goals are:

Business Goal – Improve Customer Satisfaction rating by
15% in 2 years

Testing Goal – Reduce Defects in Production by 95% in
2 years

Testing Goal – Reduce System Downtime to 99.9% in
18 months

Business Goal – Improve time-to-market by 40% in 1 year
Testing Goal – Decrease testing cycle time by 50% for a
release in 1 year

Business Goal – Reduce IT Operational Cost by 10% in
20 months

Testing Goal – Reduce testing effort for Business As Usual
releases by 20% in 18 months

Identify Measures

This stage consists of three individual steps:

Develop Metrics List

At this point, it is important to take the testing goals that
were created in the previous step to develop a list of
metrics. Some examples of these translating goals to
metrics are:

Testing Goal – Reduce Defects in Production by 95% in
2 years

Metrics – Defect Detection Efficiency, Defect Removal
Efficiency, Requirements Coverage

Testing Goal – Decrease testing cycle time by 50% for a
release in 1 year

Metrics – Test Case Design/Execution Productivity,
Automated Testing Test Coverage

Conduct Gap Analysis

Using the current state analysis determine which of these
metrics can be captured with the current testing process
and data capture mechanisms in place.

Capture Current State Measurements

For each of the identified metrics and those that exist
today, list the actual max and min limits based on the data
available.

This three step formal process of identifying measures will
help immensely as we move towards developing an
implementation plan for establishing the metrics program.

Develop Implementation Plan

It is critically important to understand that putting a metrics
program in place without establishing a process to capture
the required data is meaningless. It is therefore necessary
for the implementation plan to take into account the three
dimensions of a testing organization.

Process

The implementation plan should detail the necessary
changes that are required, if any, to the testing process
that is currently in place so that the measures that are
required to develop the metrics program are in place.

Tools

The plan should take into consideration implementation of
any tools that need to be implemented for the measures to
be captured effectively, automation of data capture, and for
the reporting of the metrics data.

People

The implementation plan should detail any training that is
required for the testing organization to capture the data
that is required and for use of the new tools. It is also
required for the implementation to build-in some time for
familiarization and implementation of the new tools &
processes.

Data Governance Framework

Any metrics reporting is only as effective as the data that goes
into the report. Therefore a very critical step in establishment of
the metrics program is the data governance framework.
Governance framework needs to include:

 • Data Standardization – Is there a common taxonomy
for the metrics data across the organization

 • Data Integrity – Is the data estimated,
guesstimated? If yes, how close does it reflect the
reality across the organization?

 • Data Freshness – Data reflected in the metrics
reports should not be stale so that change actions
taken in light of the report is relevant to the
organization

11A whitepaper on software testing metrics

Implement Metrics Program

With the pre-work that is done up to this point,
this process becomes more straightforward. The
implementation is then a matter of reviewing the process
to capture measurement, the process that goes into
analysis of those measurements, and the reporting of the
metrics.

The implementation process should include feedback
from all the different stakeholders in the organization and
constant review of the metrics to ensure that it aligns
with the business objectives.

Setup Review & Refine Process

As it is with every other system, as the organization
improves its performance through the use of metrics
program or otherwise, a period review of the metrics
system is required. Therefore, as part of the Metrics Program
setup, it is absolutely essential to put a short-term and a
long-term review process in place.

The objective of the short-term review process is to
ensure that the measurements, the analysis, and the
reporting processes are enabling the organization to
validate the actions taken towards testing improvements
are yielding the desired results.

The long-term review process is to conduct a retrospective
on the implementation of the metrics program and see
how it needs to refine the process of identify new goals,
measures, metrics for a more matured metrics program.

Conclusion
A Metrics Program is essential to evaluating where
we are on a project, how we are doing as a testing
organization, and how we are serving our business
community.

Many a times Sr. Executives start with the process of
making changes to the testing organization based on
their perception of the issues that they hear from the
business or development teams or that they glean from
basic
metrics that are available to them. Without a proper
metrics program in place, it is not clear if there are
underlying issues and there is no way to know whether
the change strategy is actually having an impact until
much energy and resources have been expended.
At the other end of the spectrum is, the approach to
develop a bunch of metrics and start managing the testing
organization based on some or all of it. This approach has
in many cases led to disgruntled testing organization
(e.g. test case execution rate), who believe they are

judged unfairly or in other cases led to encouraging bad
behavior within the testing team (e.g. tracking total defects
reported).

It is therefore critically important for any testing organization
that is looking to improve its performance to:

1. Take a concerted effort in bringing together all the
stakeholders – business teams, IT management,
development team, testing team, and other support
teams, to develop a set of goals to measure
performance

2. Employ and/or leverage the right tools to automate
as much of the data capture and reporting as
possible

3. Develop a set of measures that are aligned with
the business performance goals set for the
organization

Last Line; implementing a robust metrics program
is not a one-time event, it is a journey that requires
experimentation and learning.

References
• “Economics of Software Quality” – Capers Jones &

Olivier Bonsignour

• “Managing the Testing Process” – Rex Black

• “Metrics and Performance Measurement System for the
Lean Enterprise” - Professor Deborah Nightingale

• “Better Software Magazine” – various articles

• “Testing Experience” – various articles

12A whitepaper on software testing metrics

VA
S

 1
0/

01
/1

7
U

S
 L

E
TT

E
R

 B
A

S
IL

 4
19

7

For more information, contact: marketinginfo@mphasis.com
USA
460 Park Avenue South
Suite #1101
New York, NY 10016, USA
Tel.: +1 212 686 6655

Copyright © Mphasis Corporation. All rights reserved.

UK
88 Wood Street
London EC2V 7RS, UK
Tel.: +44 20 8528 1000

INDIA
Bagmane World Technology Center
Marathahalli Ring Road
Doddanakundhi Village, Mahadevapura
Bangalore 560 048, India
Tel.: +91 80 3352 5000

About Mphasis
Mphasis is a global Technology Services and Solutions company specializing in the areas of Digital and Governance, Risk & Compliance. Our solution
focus and superior human capital propels our partnership with large enterprise customers in their Digital Transformation journeys and with global
financial institutions in the conception and execution of their Governance, Risk and Compliance Strategies. We focus on next generation technologies for
differentiated solutions delivering optimized operations for clients.

www.mphasis.com

Santosh Subramanian
Testing Practice

Santosh has over 22 years of experience in IT consulting
with Fortune 500 corporations. He has successfully built
and operated multiple testing organizations across different
industries including Financial Services, Insurance, and
Logistics. Since joining Mphasis in August 2012, Santosh
has successfully led opportunities from pre-sales to
proposal creation, to contract negotiation, transition, and
testing services delivery. Currently, he is working with our
strategic accounts providing point testing solutions.

