
1 Mphasis

Emerging Open and Standard Protocol Stack for IoT

By Aniruddha Chakrabarti
AVP Digital Practice

2 Mphasis

Internet of Things (IoT) has come a long way since British
entrepreneur Kevin Ashton first coined the term in 1999.
Though the advent of Industrial IoT goes a long way into
the past (remember RFID?), it did not have the form and
momentum currently present in the IoT space.

IoT is one of the key components of digital and digital
transformation along with Social, Mobile, Analytics, and
Cloud (SMAC). Some product vendors refer to IoT as
Internet of Everything or Industrial IoT. Digital uses IoT
and SMAC stack as building blocks to provide a superior
customer experience for users. Today, IoT together with
Big Data, Analytics and Cloud can help enable numerous
possibilities that were unheard of earlier and technologically
not possible otherwise. IoT takes the absolute center stage
in the roadmap of product vendors, software companies,
system integrators, and IT service companies.

According to Industry Analysts there will be nearly 26 billion
devices on the IoT by 2020. Cisco estimates that 50 billion
devices and objects will be connected to the internet by
2020. Other vendors have slightly different predictions.
Irrespective of these differences, it is very clear that the
number of devices/things connected would be in the range
of billions, not millions.

One of the biggest challenges faced by businesses,
architects, and developers while dealing with IoT projects is

selecting the technology stack and tools – this stems from
the fact that standardization in the IoT protocols is virtually
non-existent. The root of the problem is the constrained
environment of IoT characterized with low memory
availability, low power, low bandwidth requirement, and
high packet loss – combined, these do not allow TCP/IP
stack and web technologies to be used easily for IoT.

However, to solve this challenge, there are hundreds of
proprietary protocols in IoT, M2M (Machine to Machine)
and Home Automation space such as ZigBee and Z-Wave.
Though these protocols are supported by an alliance of
product vendors, they are not standardized like TCP, IP,
HTTP or SMTP.

Although the scenario is still a bit cloudy, a set of open,
standardized set of protocols have started to emerge.
Most bodies such as IEEE, IETF or W3C have standardized
protocols such as 6LoWPAN or CoAP. In the long run,
these protocols would emerge successful like the open
standardized web standards used by the web today.

The figure below shows the IoT protocols that have been
standardized for each layer of TCP/IP model including
Network, Internet, Transport and Application Layers.

Let’s take a look at the protocols bottom up the stack.

IoT Stack Web Stack

Web Applications
IoT

Applications

Binary, JSON, CBOR HTML, XML, JSON

HTTP, DHCP, DNS, TLS/SSL

TCP, UDP

IPv6, IPv4, IPSec

Ethernet (IEEE 802.3), DSL,
ISDN, Wireless LAN
(IEEE 802.11), Wi-Fi

CoAP, MQTT, XMPP, AMQP

UDP, DTLS

IPv6/IP Routing

6LoWPAN

IEEE 802.15.4 MAC

IEEE 802.15.4 PHY /
Physical Radio

TCP/IP Model

Data Format

Application Layer

Transport Layer

Internet Layer

Network/Link
Layer

Device
Management

Figure 1 – Standardized IoT Protocols

3 Mphasis

Network / Link Layer
IEEE 802.15.4

IEEE 802.15.4 is a standard for wireless communication
that defines the Physical layer (PHY) and Media Access
Control (MAC) layers. It is standardized by the IEEE
(Institute for Electrical and Electronics Engineers) similar to
IEEE 802.3 for Ethernet, IEEE 802.11 is for wireless LANs
(WLANs) or Wi-Fi.

802.15 group of standards specifies a variety of wireless
personal area networks (WPANs) for different applications
(For instance, 802.15.1 is Bluetooth). IEEE 802.15.4
focuses on communication between devices in constrained
environment with low resources (memory, power and
bandwidth).

Internet Layer
6LoWPAN

6LoWPAN is the secret sauce that allows larger IPv6
packets to flow over 802.15.4 links that support much

smaller packet sizes. 6LoWPAN is the acronym of IPv6 over
Low Power Wireless Personal Area Networks. So 6LoWPAN
as the name implies is an adaptation layer that allows
transport of IPv6 packets over 802.15.4 links. Without
6LoWPAN IPv6, internet protocols would not work in these
Low Power Wireless Personal Area Networks that uses
IEEE 802.15.4.

6LoWPAN is an open standard defined under RFC 6282 by
the Internet Engineering Task Force (IETF), the body that
defines many of the open standards used on the internet
such as UDP, TCP and HTTP to name a few.

As mentioned previously, an IPv6 packet is too large to fit
into a single 802.15.4 frame. What 6LoWPAN does to fit an
IPv6 packet in 802.15.4 frame is -

• Fragmentation and Reassembly - It fragments the IPv6
packet and sends it through multiple smaller size packets
that can fit in an 802.15.4 frame. On the other end, it
reassembles the fragmented packets to re-create the
IPv6 packet

• Header Compression – Additionally it also compresses
the IPv6 packet header to reduce the packet size

IEEE 802.15.4 PHY /
Physical Radio

IPv6/Routing

IEEE 802.15.4 MAC

Network/Link
Layer

Internet Layer

6LoWPAN

• IPv6 packet encapsulation
• IPv6 packet fragmentation & reassembly
• IPv6 header compression
• Link layer packet forwarding

Figure 2 - IPv6 sent into 802.15.4 MAC by 6LoWPAN

Transport Layer
UDP

While TCP is used predominantly in Internet as Transport
Layer Protocol (except gaming or video streaming where
User Datagram Protocol or UDP is used), most IoT
scenarios are well suited for UDP. UDP is a much lighter
protocol compared to TCP. UDP is a connection protocol
and does not come with resiliency features of TCP, such
as guaranteed packet delivery. On the other hand, UDP is
much faster than TCP, the header size is much smaller than
TCP – making it suitable for the constrained environment of
devices and sensors.

Higher level Application Layer IoT protocols like CoAP use
UDP rather than TCP.

DTLS

DTLS or Datagram Transport Layer Security is a TLS/SSL
counterpart that runs on UDP. The way TLS/SSL takes care

of security for TCP communication, DTLS provides the
same security features on UDP or Datagrams.

Application Layer
CoAP

CoAP or Constrained Application Protocol is a specialized
Web Transfer Protocol for constrained nodes and
constrained networks on the IoT. CoAP is
an Application Layer protocol in the TCP/IP model (Web
uses HTTP as an Application Layer protocol).

The term “Constrained” is used because it is designed
specifically from the ground up to work well in constrained
environments. The devices, sensors and actuators in IoT
operate in a constrained environment with low memory,
low power, low bandwidth, and high rate of packet failure.
HTTP was not designed to work in this sort of environment,
so HTTP, which is relatively heavyweight with large header
size and text encoding struggles to work in IoT constrained
environment.

4 Mphasis

This is where CoAP comes to play – CoAP has been
standardized by IEFT (The Internet Engineering Task Force)
Constrained RESTful Environments (CoRE) Working Group.
Think of CoAP as web protocols for devices.

CoAP can be transparently mapped to HTTP. Following are
the similarities between CoAP and HTTP –

• CoAP follows the same request-response pattern used
by HTTP that we all are very familiar with. The CoAP
client (a smartphone, for example) sends a request to the
CoAP server (device/things) and the server then sends a
response back

• Like the web, devices are addressed using IP address
and port number. Access to services exposed by the
device is via RESTful URLs

• CoAP uses familiar HTTP features like Methods (Get,
Post, Put, and Delete), Status Codes, URLs and
content-type

• CoAP supports discovery so that IoT devices/things
could be discovered

• CoAP provides simple proxy and caching capabilities

CoAP has a few differences as well -

• CoAP runs on UDP as compares to HTTP, which typically
uses TCP. UDP is lighter than TCP and has less overhead

• CoAP supports only Get, Put, Post and Delete methods.
CoAP uses small and reduced set of headers (header
size is limited to 4 bytes), and HTTP status codes to be
lightweight

• CoAP supports confirmable and non-confirmable
message types

In the example given below, to get the temperature from the
thermostat (which acts like a server), the client, which is a
smartphone sends a GET request. The URL uses RESTful
architecture - clearly indicating the device name, sensor
data it is looking for, etc. The thermostat or the server
responds back with the current temperature.

coap://myhome.in:5683/nest_bedroom/temp

72 F

coap://myhome.in:5683/nest_livingroom/temp22 F

CoAP Server 1
(Thermostat in Bedroom)

CoAP Client CoAP Server 2
(Thermostat in Living Room)

Name of the
protocol

coap://myhome.in:5683/nest_bedroom/temp

Port (5683 is
the default port
CoAP uses)

Name of
the Device

Name of the parameter
device controls
(temperature here)

4G 70%

CoAP also adds the feature of “observation”, which HTTP
lacks. This is very useful in IoT scenarios. In the above
example where the CoAP client, which is a smartphone
app, is requesting temperature from the thermostats,
it can also specify that it should notify when the
temperature changes – this functionality is called
“Observe:” When the temperature changes, the CoAP
server (in this case the thermostat), notifies the client. This
was not possible before the recent server-sent event and
WebSocket specification in HTTP.

CoAP libraries exists practically in all programming
languages like C, Java, C#, Python, JavaScript, Go, Erlang,
Ruby, etc. There are libraries for iOS and Android as well.
Coap.technology website lists many of them.

MQTT

MQTT stands for Message Queue Telemetry Transport.
MQTT is a publish-subscribe based “light weight”
messaging protocol for IoT and M2M (Machine-to-Machine
communication). To put it simply, MQTT is the AMQP or
JMS for the constrained environment of IoT. Andy Stanford-
Clark and Arlen Nipper invented MQTT back in 1999, when
their use case was to create a protocol for minimal battery
loss and minimal bandwidth connecting oil pipelines over a
satellite connection.

MQTT uses a broker-based pub-sub architecture in the
constrained IoT environment similar to other messaging
products that exist in the Web and Client Server world.

Figure 3.2 – CoAP using URLs following RESTful services

Figure 3 – COAP using GET and RESTful URLs

5 Mphasis

So there is:

• MQTT Publisher - a sensor or device in IoT world that
publishes a piece of information

• MQTT Subscriber – anyone who is interested to
subscribe and receive a piece of information they’re
interested in. It could be a smartphone, a wearable

device or even other devices that are interested to know
about other devices around and change themselves
based on self-learning

• MQTT Broker – An intermediary that receives information
from publisher and forwards them to the subscribers

MQTT Publisher
(Thermostat)

Publish

MQTT
Subscriber 1

MQTT
Subscriber 2

Temp 72 F

MQTT Broker

Subscribe to TempPublish

Subscribe to Temp

Publish

4G 70%

72 F

72 F

MQTT provides subject/topic-based, content-based, and
type-based filtering. The above example uses topic-based
filtering where both the subscribers have subscribed for the
topic “temp” to the broker. When any device or publisher
publishes a message with topic “temp”, the broker sends
the message to all subscribers who have subscribed for
temp – in this case both Subscriber 1 and Subscriber 2.

MQTT is actively promoted and supported by industry
giants and it is part of many popular messaging suite
of products. There are also MQTT specific brokers like
Mosquitto and HiveMQ. MQTT libraries are available in
many programming languages – one of the very prominent
MQTT Library is Eclipse Paho. MQTT.org website lists many
of them.

Data Format
CBOR

CBOR (Concise Binary Object Representation) is a data
format designed with the goal of providing IoT with
very small message sizes. CBOR is based on the wildly
successful JSON data model. While JSON uses text
encoding, CBOR uses binary encoding that results in
compact message size.

Note: This article does not discuss IoT protocols for device
management. There are separate protocols like OMA
Lightweight M2M, which is an industry standard for device
management of IoT and M2M devices.

Conclusion

The future of IoT lies in standardizing the protocols used
across network stack. These set of open and standard
protocols like CoAP, MQTT and 6LoWPAN would eventually
become as successful as the TCP/IP stack used across
web and Internet.

Appendix 1: CoAP Details
CoAP Message Types

CoAP defines four different types of messages.

• CON or Confirmable Message
A confirmable message requires a response,
either a positive acknowledgement or a negative
acknowledgement. In case acknowledgement is not
received, retransmissions are made until all attempts are
exhausted.

• NON or Non-Confirmable Message
A non-confirmable request is used for unreliable
transmission (like a request for a sensor measurement
made periodically. Even if one value is missed, the impact
is not significant). Such a message is not generally
acknowledged.

• ACK or Acknowledgement
It is sent to acknowledge a confirmable (CON) message.

• RST or Reset
This represents a negative acknowledgement and literally
means resetting. It generally indicates some kind of
failure (example - unable to parse received data).

Figure 4 – MQTT in the world of IoT

6 Mphasis

CoAP Status Codes
As mentioned earlier CoAP status codes are directly
influenced by HTTP status codes. CoAP uses X.YY format

for status codes. So HTTP’s “404 - Resource Not Found”
status code is “4.04 Not Found” in CoAP. The table below
shows the similarity between CoAP and HTTP status
codes.

Figure 5 – CoAP and HTTP Status Codes

7 Mphasis

Appendix 2: Using CoAP Libraries
CoAP libraries exist in almost all programming languages like C, Java, C#, Python, JavaScript, Go, Erlang, and Ruby.
There are libraries for iOS and Android also.

For example, we would use the Node.js JavaScript CoAP library (both for the client and server). This library would seem
very familiar if you have used Node. More details about the library could be found at https://github.com/mcollina/node-
coap

Installing the Node CoAP Library

You need to have Node and npm installed on your machine as prerequisites. You can download and install them from
nodejs.org. To install Node CoAP library use “npm install coap” in the terminal/command window. Once Node CoAP
library is installed you can use it in your node code.

Connecting to a remote CoAP server

// Load coap module - similar to node http module

var coap = require(‘coap’);

// coap.me hosts CoAP servers. The default CoAP port

is 5683

var remoteServerUrl = ‘coap://coap.me:5683/large’;

var request = coap.request(remoteServerUrl);

var request = coap.request(localServerUrl);

request.on(‘response’, function(response) {

 response.pipe(process.stdout);

 response.on(‘end’, function() {

 process.exit(0);

 });

});

request.end();

Local CoAP server and client

Server:

// Load coap module - similar to node http module

var coap = require(‘coap’);

// Create a CoAP Server object - similar to creating

a Http Server object in node

// var http = require(‘http’);

// var httpServer = http.

createServer(function(req,res){ });

// The default CoAP port is 5683

var coapServer = coap.createServer(function(req,

res){

 res.write(‘Hello’ + request.url.split(‘/’)[1] +

‘\n’)

 res.end(‘Hello from CoAP server’);

});

// Keeps the CoAP server running

coapServer.listen(function(){

 console.log(‘CoAP server started!’);

});

Client:

var coap = require(‘coap’);

var localServerUrl = ‘coap://localhost:5683/world’;

var request = coap.request(localServerUrl);

request.on(‘response’, function(response) {

 response.pipe(process.stdout);

 response.on(‘end’, function() {

 process.exit(0);

 });

});

request.end();

Further Reading

https://en.wikipedia.org/wiki/Internet_of_Things

https://en.wikipedia.org/wiki/IEEE_802.15.4

https://en.wikipedia.org/wiki/6LoWPAN

http://postscapes.com/internet-of-things-protocols

http://coap.technology

http://mqtt.org

https://www.utwente.nl/ewi/dacs/colloquium/archive/2010/
slides/2010-utwente-6lowpan-rpl-coap.pdf

8

VA
L

10
/1

2/
15

 U
S

 L
E

TT
E

R
 B

A
S

IL
 3

72
4

For more information, contact: marketinginfo@mphasis.com
USA
460 Park Avenue South
Suite #1101
New York, NY 10016, USA
Tel.: +1 212 686 6655
Fax: +1 212 683 1690

Copyright © Mphasis Corporation. All rights reserved.

UK
88 Wood Street
London EC2V 7RS, UK
Tel.: +44 20 8528 1000
Fax: +44 20 8528 1001

INDIA
Bagmane World Technology Center
Marathahalli Ring Road
Doddanakundhi Village, Mahadevapura
Bangalore 560 048, India
Tel.: +91 80 3352 5000
Fax: +91 80 6695 9942

www.mphasis.com

Aniruddha Chakrabarti
AVP Digital Practice

Aniruddha has 16 years of IT experience spread across systems integration,
technology consulting, IT outsourcing, and product development. He has
extensive experience of delivery leadership, solution architecture, presales,
technology architecture, and program management of large scale
distributed systems.

As AVP, Digital Practice in Mphasis Aniruddha is responsible for Presales,
Solution, RFP/RFI and Capability Development of Digital Practice. He has
been the Lead Architect for many large scale distributed systems. His
interests include digital, cloud, mobility, IoT, distributed systems, web, open
source, .NET, Java, programming languages and NoSQL.

About Mphasis
Mphasis (BSE: 526299; NSE: MPHASIS) applies next-generation technology to help enterprises transform businesses globally. Customer centricity is
foundational to Mphasis and is reflected in the Mphasis’ Front2Back™ Transformation approach. Front2Back™ uses the exponential power of cloud
and cognitive to provide hyper-personalized (C = X2C

2
TM = 1) digital experience to clients and their end customers. Mphasis’ Service Transformation

approach helps ‘shrink the core’ through the application of digital technologies across legacy environments within an enterprise, enabling businesses
to stay ahead in a changing world. Mphasis’ core reference architectures and tools, speed and innovation with domain expertise and specialization
are key to building strong relationships with marquee clients. To know more, please visit www.mphasis.com

