
Deep Learning in Natural 
Language Processing

Ashutosh Vyas
Assistant Manager, Mphasis NEXTlabs



2

Abstract
Deep learning has emerged as a highly efficient technique in 

machine learning to perform text analytics, which includes 

text classification, text sequence learning, sentiment 

analysis, question-answer engine, etc.

This paper presents the concept and steps of using deep 

learning in NLP, ways to pull out the features from the text, 

ways to prepare data for deep learning and popular methods 

that are being used for NLP, including RNN, CNN, LSTM.

We also present the results of a working example based on 

a movie review shared by IMDB.

Feature Representation
When feeding textual data to Artificial Neural 

Networks (ANN), we need to consider few points 

about the way we create the data. We input the data 

vector x in-dimensions and generate the output in  

out-dimensions. Instead of creating an individual dimension 

for each and every feature, we need to embed each feature 

into a D-Dimensional space and represent as a dense vector 

in the space. 

The main advantage of dense vector representation is that 

if there exists a similarity sequence which we can learn, that 

can be captured best in dense vector representation.

In the example presented, we used continuous-bag-of-

words (CBOW) approach to build our dense vectors.

Feature Extraction
Let us now look at some of the methods used to extract 

features from the given text:

CBOW: Continuous bag of words is a dense vector based 

feature extraction approach. Neural networks assume a 

fixed input. Thus for training the NN we need to extract 

features from textual data. CBOW approach enables feature 

extraction by expressing each word in the training data set 

as unique feature. This creates a vector representation 

for each sentence to be used in training NN. For specific 

importance association we provide a weighted vector as an 

input to NN. This weight association is done majorly using 

two approaches – summing or averaging of embedded 

features and weighted averaging of embedded features. An 

example is tf-idf of collection of bag of words and giving 

weight to different dimensions based upon importance. 

Note: We can adopt other methods also as discussed in 

section titled 'Word Embedding'.

Distance and Position Features: The distance can 

be calculated by subtracting the feature vectors of the 

corresponding words, and this information can be used to 

train the Neural Networks.

Dimensionality:  Decision needs to be made on the 

dimensionality of the embedded vectors. It is a trade-off 

between processing speed and task accuracy.

In our example, we used the context window of ten words.

Introduction
In recent years multi-layer neural networks are gaining back their importance in the field of Natural Language Processing 
(NLP), as they are becoming capable of generating state-of-the-art results with a relatively decent speed due to 
utilization of Graphical Processing Units. The introduction of different methods in multi-layer neural network, such as 
Recurrent Neural Networks (RNN), Convolutional Neural Networks (CNN), Longest State Time Memory Neural Networks 
(LSTM) has proved to be very efficient in generating better results. 

In this paper, we will discuss different methods that can be adopted to perform NLP using deep learning methodologies. 
We will start our discussion with representation methods available to present the data, then we move to feed forward 
NN, RNN, CNN and see how to use these methods for NLP.



3

Training Functions
Given below are the types of functions that are used in 

modeling deep learning neural networks. The selection of 

these functions depends majorly on the problem statement. 

Non-linear Functions

Neural networks are universal approximators and thus can 

approximate any non-zero linear or non-linear function. 

The two basic things that should be kept in mind before 

selecting a non-linear function are:

1)   It should cover the entire input range, from negative 

infinity to positive infinity, as its domain.

2) Its output should be bounded in a set range.

The popular non-linear functions used are: Sigmoid, Hard 

Tanh, Hyperbolic tangent, Rectifier, Relu.

Output Transformation Functions 

In many cases we use a transformation function in the outer 

most layer of neural network.

The most popular function used here is softmax, to represent 

multi-class classification.

Loss Function

When training the neural network, we require a loss function 

which acts as an indicator to identify how far is the network 

trained output from the actual output.

Selection of lost function depends upon the type, 

requirement and extent of tolerance of loss function.

Most popular loss functions are: Hinge-binary, 

Hinge-multiclass, log-loss, categorical cross entropy loss, 

ranking loss.

Word Embedding 
Let us now look at the methodology to represent each of 

the features into a low dimensionality space. This technique 

is popularly used for sequential pattern training of the 

sentences in the documents. 

Continuous-Bag-of-Words

This approach is used to capture the sequential information 

in the sentences. The process is as follows:

Total number of unique words are collected and all the words 

are given a vector representation, this is called one hot 

vector representation. Depending upon the window size, 

words that are sequential part of a sentence are collected 

and a training model is developed. E.g.:

A quick brown fox jumps right over a lazy dog.

In the above sentence, suppose we represent a word 

with one word to its left and one to its right, then 

the training data would look like:

[(a, brown),quick],[(quick,fox),brown] etc.

Then a neural network is taken with input layer's  

size = C(Context)*V(vocabulary size) and a hidden layer's 

size = N(heuristic) and output layer's  

size = V(vocabulary size).

An optimization technique like gradient descent, is used to 

train the model.

Figure 1 represents single word context CBOW.

X1

h1

WV*N={wki} WN*V={wy}

h2

h2

hN

y1

y2

y3

yj

yv

X2

X3

Xy

Xv

Input Layer Hidden Layer Output Layer

Figure 1



4

Recurrent Neural Networks
A Recurrent Neural Network (RNN) is a type of neural 

network where connections between units form a directed 

cycle. This allows NN to create an internal state of the 

network which allows it to exhibit dynamic temporal 

behavior. RNNs can use their internal memory to process 

arbitrary sequences of inputs. This makes them applicable 

to tasks such as unregimented connected handwriting 

recognition or speech recognition.

RNNs are neural nets that can deal with sequences of 

variable length. They are able to perform this by defining a 

recurrence relationship over timestamps which is typically 

the following formula: 

Sk=f (Sk−1xWrec+Xk xWx)

Above equation forms the basic structure of RNN. The 

previous state result is used to calculate the current 

state output.

Figure 2 represents a fully connected recurrent neural net.

In our example, we used LSTM, a version of RNN due to the 

presence of vanishing gradient problem in RNN.

Convolutional Neural Networks
Convolutional neural networks are a type of artificial neural 

networks that use convolution methodology to extract the 

features from the input data to increase the number of 

features.  

The basic steps are as follows: Considering the input 

data set, we decide and select N number of convolution 

functions, also known as filters, where N = maximum 

number of features we want. After the selection of filter 

functions we convolute the input with the filters. The output 

from the convolution is a D-Dimensional vector, which is 

then sent for pooling.

Pooling is a way of selecting most relevant features from 

the set of given features. Mostly for text analytics we select 

the features with max or average values.

Once the best features are selected, the normal architecture 

of ANN is followed.

Convolutional NN are majorly used for image classification, 

text classification, etc.

Figure 3 demonstrates a fully connected, multilayered 

filtering CNN.

CNN are good performers for text classification, but poor 

in learning the sequential information from the text. Hence, 

LSTM was used in the given example.

x

s
V

U

W W

V V V

U U U

W W W

o

x1-1

o1-1
o1

o1+1

s1-1 s1+1s1

x1 x1+1
Unfold

Figure 2

84 x 84
20 x 20

9 x 9

Input Layer

Convolu�on Fully connected

1st Hidden

4 Frames

Nodes:

8 x 8 x 4 x 16 4 x 4 x 16 x 32 9 x 9 x 32 x 256 256 x 4

84 x 84 x 8 20 x 20 x 16 9 x 9 x 32 256 4

Weights: 

15 Fillers 32 Fillers 

2nd Hidden 3st Hidden {256 fully connected}

Output {ac�on}
8 x 8 4 x 4

4 x 4

4 x 4

8 x 8

Figure 3



5

LSTM
Long-short-term-memory (LSTM) is to deal with the  

concept introduced for Recurrent Neural Networks because 

of the problem of vanishing gradient in RNN.  

Vanishing gradient problem is faced in machine learning 

while training the neural nets using the back propagation 

algorithm. In back propagation, each of the weights receives 

an update proportional to gradient of the error function. As 

the number of layers increase, the gradients of the error 

functions multiply. This slows down the training process of 

NN terribly.

IN RNN, this problem exacerbates when the feedback 

component is also added to the training of weights. 

To handle this, LSTM was introduced by Hochreiter and 

Schmidhuber (1997).

Figure 4 represents the blog diagram of LSTM. 

LSTM selects the parameters and decides when to and 

when not to update the memory based on the log-logistic 

function, working on the input vector and the latest 

learnt weight.

Forget gate helps LSTM to forget the learnt weight if the 

effect of carrying it forward is negligible, thus reducing the 

long term dependencies.

Working Example
We performed sentiment analysis of movie review data 

taken from IMDB.

The data has 5000 total sentences including positive and 

negative sentiments.

We used RNN – LSTM  as we need to train the sequential 

information to our neural nets.

Data was split into 75%  training and 25% testing data by 

random sampling.

Deep Learning module was constructed as mentioned 

below:

Word embedding:  skip-gram (similar to CBOW)

RNN LSTM layer = 1

Number of LSTM nodes = 100

Neural Nodes = 5

Output Node = 1 (as there exist only 2 classes to classify)

Cost function: binary cross entropy

Optimizer: RMS prop

Non-linearity = tanh

After creating the neural network using Python as the 

programming language, following result was obtained:

Validation Accuracy: 82.30%

This accuracy signifies that out of 25% of the entire data 

(test set), having 0 - 1 tags , 82.30% was correctly classified 

as positive or negative sentiment.

References
[1]. Goldberg, Yoav. "A primer on neural network 

models for natural language processing." arXiv preprint 

arXiv:1510.00726 (2015).

[2]. Rong, Xin. "word2vec parameter learning explained." 

arXiv preprint arXiv:1411.2738 (2014).

Input Gate

Memory Cell 
Input

Output Gate

Memory Cell
Output

Forget Gate
Self-recurrent

Connec�on

Figure 4



1

Ashutosh Vyas 
Assistant Manager, Mphasis NEXTlabs

Mr. Ashutosh Vyas is an Assistant Manager at Mphasis NEXTlabs. He 

completed his B.Tech from SKIT, Jaipur Rajasthan Technical University, 

followed by M.Tech from IIITB Bangalore in Information Technology. 

He pursued his interest in analytics and machine learning by joining 

NEXTLabs as a Sr. Analyst, where he worked on different analytical and 

technical aspects and designed an agent based simulation model for 

Mphasis proprietary product – InfraGraf. He designed a machine learning 

based information retrieval algorithm from documents and sentiment 

analysis module using deep learning. Ashutosh also published a paper 

on Life Event Detection in InnovEx Asia 2016 conference.

His technical interest resides in machine learning, agent based 

modelling, optimization theory, graph theory, stochastic based analysis, 

and time series analytics.  

6

For more information, contact: Nextlabs@mphasis.com

About Mphasis
Mphasis (BSE: 526299; NSE: MPHASIS) applies next-generation technology to help enterprises transform businesses globally. Customer centricity is 
foundational to Mphasis and is reflected in the Mphasis’ Front2Back™ Transformation approach. Front2Back™ uses the exponential power of cloud 
and cognitive to provide hyper-personalized (C = X2C2

TM   = 1) digital experience to clients and their end customers. Mphasis’ Service Transformation 
approach helps ‘shrink the core’ through the application of digital technologies across legacy environments within an enterprise, enabling businesses 
to stay ahead in a changing world. Mphasis’ core reference architectures and tools, speed and innovation with domain expertise and specialization 
are key to building strong relationships with marquee clients. To know more, please visit www.mphasis.com


