
Data Augmentation Techniques for Tabular Data
Whitepaper by Abinaya Mahendiran, Manager – Data Science, NEXT Labs | Vedanth Subramaniam, Intern, NEXT Labs

Contents

Introduction 1

Why is Data so Important? 1

Data Augmentation 2

What Happens if You Train on an Imbalanced Dataset? 2

Sampling 4

Autoencoders-based Augmentation 5

Conclusion 7

1.
Introduction
Data is the core of any Machine Learning (ML) or Deep Learning (DL) algorithm. Data must be
provided in a format that an algorithm can understand. The main function of the ML/DL algorithm
is to find patterns or information available in the data which is otherwise hidden from a human.
The algorithm will fail to learn the underlying information if the data is not sufficient or if it is not
in a suitable format.

2.
Why is Data so Important?
The golden rule of Machine Learning is that an algorithm is only as good as the data it’s fed.
95% of advertisers, per the Interactive Advertising Bureau’s Data Center of Excellence, have
terabytes of user data, location information and user interest they can use to target prospects.
But to effectively use ML, advertisers and marketers must have the right data for the problems they
are trying to solve when building predictive models. Machine Learning also requires the data to be
properly formatted, cleaned and organized to enable data scientists to develop predictive models.
Cleaning, maintaining and governing data is just one part of developing ML models.

Any Machine Learning project involves two key steps revolving around data:

Data pre-processing

Data pre-processing is a process of preparing the raw data and converting it into a suitable format
for an ML model to consume. It is the first and crucial step in the ML process. In any ML project,
the data doesn’t come readily formatted. It is mandatory to clean and prepare the data in the right
format. Most ML practitioners face the challenge of processing data accurately and efficiently.
It is believed that around 80% of a data scientist’s time is spent on pre-processing the data and
making it usable.

Feature engineering

For an ML model to be effective in predicting results, the algorithms must receive structured and
relevant data. Feature engineering is the process of using domain knowledge to extract features
(characteristics, properties, attributes) from raw data. A feature is a property shared by independent
units on which analysis or prediction has to be done.

After completing the above two vital steps, model training is performed. Model training is an
iterative procedure where the hyperparameters of the model are fine-tuned to achieve better and
optimal results for the problem at hand. But tuning the hyperparameters or tinkering with the ML
model might not always yield good or considerable results. After a certain number of iterations,
if the model does not converge, then either the quality or the quantity of the data is to be
questioned, sometimes even both need to be checked.

| 1

2 |2 |

3.
Data Augmentation
Data augmentation is a technique to artificially create new data from existing data and significantly
increase the diversity of data available for training the models. This is done by applying
domain-specific techniques to the subset of training data. Since the performance of a model is
highly dependent on the quality and quantity of the dataset, using synthetically generated data
might help improve the model performance to some extent.

In an ML project, the dataset is divided into three subsets:

• Training set: a subset of data used to train the model

• Validation set: a subset of data used in the unbiased evaluation of a model which will in turn help
 in tuning model hyperparameters

• Test set: a subset of data used to test the generalization of the model

When the model fails to converge or if the desired result is not obtained, data augmentation can be
done on the training set and validation set. Augmenting the test set would compromise the model.
When dealing with image data, augmentation techniques such as cropping, padding and horizontal
flipping are commonly used to train large neural networks and have proven to be effective in
improving the model’s accuracy and generalizing ability. However, when it comes to dealing with
tabular data, there has been a lack of focus on improving the data quality through augmentation.
In this paper, we explore, how to get started when dealing with class imbalance problems in a
tabular dataset.

4.

What Happens if You Train on an Imbalanced Dataset?
One of the underlying things to consider when dealing with imbalanced data in a classification
problem is which metric to use. Accuracy is commonly used as the de facto metric. However, for the
class imbalance problem, it’s not right to use accuracy as a metric. This problem is better known as
the accuracy paradox.

Figure 1: Accuracy Paradox

}
}

100 samples
of class 0

10 samples
of class 1

A B C Class

0

0

0

1

...

The given dataset presents
the class imbalance problem

with a ratio 1:10

Say we train a ML model
without fixing the class

imbalance problem

The results in terms of a
confusion matrix would

probably be:

ML model

Predicted
class 1

Real
class 1

2

8 100

0

Real
class 0

Predicted
class 0

Accuracy = 92%

Predicted
class 1

Real
class 1

2

8 100

0

Real
class 0

Predicted
class 0

False Positives = 0

Accuracy

Accuracy

Accuracy = 0.92 Precision = 1

Recall = 0.2 F1-Score = 0.33

=

=

True Positives = 2

True Positives + True Negatives

Total # samples

2 + 100

110

True Negatives = 100

False Negatives = 8

Precision =
True Positives

True Positives + False Positives

F1-Score =
2 x (Recall x Precision)

Recall + Precision

F1-Score =
2 x (0.2 x 1)

0.2 + 1
=

0.4

1.2

Precision =
2

2 + 0

Recall =
True Positives

True Positives + False Negatives

Recall =
2

2 + 8

| 3

When using accuracy as the metric to evaluate a Machine Learning model that was trained with a
dataset with the class imbalance problem, the results can be misleading. As we can see in Figure 1,
the accuracy is 92%, which would make us assume that the model is good enough. However, if we
observe, we can see that the model learned to classify everything towards class 0, which generates
the effect of having a good enough accuracy. In these cases, in addition to applying some method
to fix the class imbalance problem, it is suggested to introduce other evaluation metrics such
as precision, recall and F1-Score.

Precision is the ratio of correctly predicted positive observations to the total predicted positive

observations. The recall is the ratio of correctly predicted positive observations to all the

observations in the actual class. Finally, to generalize the precision and recall metrics,

Figure 2: Metrics

we implement the F1-Score metric, which is understood as “the harmonic mean” between the

precision and recall in other words, it provides a ratio between both metrics. Therefore, judging

the model’s performance based on the accuracy metric alone in an imbalanced dataset is

erroneous and before proceeding with model training, the dataset needs to be augmented.

Figure 3: (Left) Undersampling and (Right) Oversampling

5.

Sampling
Sampling is a method that allows us to get information about the population based on the statistics
from a subset of the population (sample) without having to investigate every individual.

Data sampling is a collection of techniques that transform the training dataset to balance the class
distribution. Once balanced, standard Machine Learning algorithms can be trained directly on the
transformed dataset without any modification. This is one way to address the imbalance in the
training data. There are many different types of data sampling methods that can be used, and there
is no single best method to use on all classification problems. Like choosing the right model, careful
experimentation is required to discover which sampling method works best for the project.

Random Oversampling
Random oversampling is the simplest oversampling technique to balance the imbalanced dataset.
It balances the data by replicating the minority class samples. This does not cause any loss
of information and results in an equal distribution of the majority and minority classes.
Oversampling might be prone to overfitting, but is an extremely fast technique that is useful
when dealing with large to extremely large tabular data.

Random Undersampling
Random undersampling method randomly removes samples from the majority class, with or
without replacement. This is one of the earliest techniques used to alleviate the imbalance in the
dataset; however, it may increase the variance of the classifier and is very likely to discard useful
or important samples. Like oversampling, this is an extremely fast technique and is useful when
handling large data.

4 |

Undersampling

Original dataset Original dataset

Oversampling

Samples of
majority class

Copies of the
minority class

Figure 4: SMOTE

| 5

SMOTE
Random oversampling is prone to overfitting as the minority class samples are replicated.
Overfitting can be avoided by SMOTE. SMOTE stands for Synthetic Minority Oversampling
Technique. It creates new synthetic samples to balance the dataset.

SMOTE works by utilizing a k-Nearest Neighbor algorithm to create synthetic data. Samples are
created through the following steps:

• Identify the feature vector and its nearest neighbor

• Compute the distance between the two sample points

• Multiply the distance with a random number between 0 and 1

• Identify a new point on the line segment at the computed distance

• Repeat the process for identified feature vectors

a) Class Imbalance

New synthetic data given by:
s1 = x1 + (rand(0, 1) * x2-x1)

b) SMOTE

x5

x2

x3

x1

x4

s2
s1

s3

SMOTE-NC

SMOTE oversampling technique only works for the dataset with all continuous features. For a
dataset with categorical features, Smote-NC (Nominal and Continuous) is used for sampling.

SMOTE can also be used for data with categorical features by one-hot encoding, but it may result
in increased dimensionality. Therefore, SMOTE-NC is used when there are categorical features.
SMOTE-NC can be used by denoting the features that are categorical, and SMOTE would resample
the categorical data instead of creating synthetic data.

6.

Autoencoders-based Augmentation
Autoencoder is an unsupervised artificial neural network that learns how to efficiently compress
and encode data and performs reconstruction of the data that is as close to the original input as
possible. Autoencoder, by design, reduces data dimensions by learning how to ignore the noise
in the data.

6 |

A Variational Autoencoder (VAE), with a slight variation in the architecture, provides a probabilistic
method for describing an observation in latent space. Thus, rather than building an encoder that
outputs a single value to describe each latent state attribute, VAE provides a probability distribution
for each latent attribute. By constructing the encoder model to output a range of possible values
(a statistical distribution), sampling can be randomly done from the distribution so that it can be fed
into the decoder model.

The latent space is continuous in nature. VAE performs sampling by outputting a 2-dimensional
vector (mean and variance) from a random variable. The vector is then used to get a sampled
encoding which is passed to the decoder. As encodings are generated from a distribution with the
same mean and variance as those of the inputs, the decoder learns from all nearby points referred
to as the same latent space.

Sample from
distributions

a1 a1

a2 a2

a3 a3

a4 a4

encoder decoder

a1

a2

a3

a4

x1

x2

x3

x4

x5

x6

a1

a2

a3

a4

De�ne
latent state
distributions

Mean

Variance

σ1

σ2

μ1

μ2 z1

z2

x1

>

x2

>

x3

>

x4

>

x5

>

x6

>

Figure 5: Variational Autoencoders

Rather than directly outputting values for the latent state in a standard autoencoder, the encoder
model of a VAE will output parameters describing a distribution for each dimension in the latent
space. The assumption here is that the prior follows a normal distribution, so the two output vectors
describe the mean and variance of the latent state distributions.

The decoder model will then generate a latent vector by sampling from these defined distributions
and proceed to reconstruct the original input. Values that are close to one another in latent space
should result in very similar reconstructions. However, this sampling process requires some extra
attention. When training the model, the relationship of each parameter in the network is tuned
to the final output loss using a technique known as backpropagation. However, this technique
cannot be applied to a random sampling process. The reparameterization trick is leveraged where
sample ɛ from a unit Gaussian is randomly sampled, and the sampled ɛ is randomly shifted
by the latent distribution's mean μ and scaled by the latent distribution's variance σ. With this
reparameterization, parameters of the distribution are optimized while still maintaining the ability
to randomly sample from the distribution.

| 7

Figure 6: Encoder and Decoder

decoder model

decoder

encoder model

backprop

ε

Z

σ

σjϭ
zjϭ

μ

Z = μ + σ ε

~ N (0,1)

μjϭ
zjϭ

zjϭ
aϭ

The Variational Autoencoders (VAE) approach can be used to augment datasets for classification or
regression tasks. For a classification task, the minority classes can be augmented into containing
the same number of samples as the majority class, thus ensuring that the class imbalance is
handled. In the case of a regression task, the desired number of samples can be generated.

7.

Conclusion
The data augmentation techniques described in the paper are applicable to tabular data in general.
There are several other techniques that are available for textual, audio, video and image data.
Most of the use cases that come up in the industry will require tabular data as the first step, but
the availability might be scarce. In those scenarios, any of the above techniques can be used to
increase the diversity and the quantity of tabular data.

Authors

Abinaya Mahendiran holds a master’s degree in Computer Science with a specialization
in Machine Learning and Deep Learning from the International Institute of Information
Technology Bangalore (IIIT-B). Her research areas include Natural Language Understanding/
Processing, Machine Learning, Deep Learning and MLOps. She has extensive software
engineering and data science experience. At NEXT Labs, she has been building and
productionizing NLU/NLP solutions for various clients both on-premise and on the cloud.
She loves contributing to open-source projects in her free time.

Vedanth is a Machine Learning intern at Mphasis NEXT Labs. His areas of interest include
Computer Vision, Natural Language Processing and Explainable AI. He is currently pursuing
his Bachelor’s in Engineering at the College of Engineering Guindy, Anna University, and
wants to specialize in the field of Deep Learning.

Abinaya Mahendiran
Manager – Data Science, NEXT Labs

Vedanth Subramaniam
Intern, NEXT Labs

2 |8 | | 5| 11| 7www.mphasis.com

N
R

25
/0

5/
22

 U
S

LE
TT

ER
 B

AS
IL

74
08

About Mphasis
Mphasis’ purpose is to be the “Driver in the Driverless Car” for Global Enterprises by applying next-generation design, architecture and
engineering services, to deliver scalable and sustainable software and technology solutions. Customer centricity is foundational to Mphasis,
and is reflected in the Mphasis’ Front2Back™ Transformation approach. Front2Back™ uses the exponential power of cloud and cognitive to provide
hyper-personalized (C = X2C²

 ™= 1) digital experience to clients and their end customers. Mphasis’ Service Transformation approach helps ‘shrink
the core’ through the application of digital technologies across legacy environments within an enterprise, enabling businesses to stay ahead in a
changing world. Mphasis’ core reference architectures and tools, speed and innovation with domain expertise and specialization, combined with an
integrated sustainability and purpose-led approach across its operations and solutions are key to building strong relationships with marquee clients.
Click here to know more. (BSE: 526299; NSE: MPHASIS)

UK
Mphasis UK Limited
1 Ropemaker Street, London
EC2Y 9HT, United Kingdom
T : +44 020 7153 1327

INDIA
Mphasis Limited
Bagmane World Technology Center
Marathahalli Ring Road
Doddanakundhi Village, Mahadevapura
Bangalore 560 048, India
Tel.: +91 80 3352 5000

For more information, contact: marketinginfo.m@mphasis.com

Copyright © Mphasis Corporation. All rights reserved.

USA
Mphasis Corporation
41 Madison Avenue
35th Floor, New York
New York 10010, USA
Tel: +1 (212) 686 6655

