
Quantum Computing-based Airline Crew
Pairing Optimization
Whitepaper by NEXT Labs, the Mphasis research arm focused on disruptive and breakthrough innovations across
Cognitive, Cloud and Service Transformation

Contents

Executive Summary 1

Background 1

Business Drivers and Challenges 2

Problem Formulation 2

Solution Methodology 4

Results & Discussion 8

References 14

1.
Executive Summary
The airline industry globally uses a suite of optimization tools for flight scheduling, fleet assignment,
aircraft maintenance and crew scheduling. These tools enable reliable, efficient and time-critical
operations and cost reduction. With the increased availability of quantum computing-based
optimization solutions, airlines can upgrade these high-impact tools to deliver superior performance
in both run time and solution quality.

In this paper, we use quantum optimization-driven designs for airline operations that can handle
large-scale problems when compared against open-source classical and quantum-inspired
optimization routines.

2.
Background
IATA (International Air Travel Association) and ICAO (International Civil Aviation Organization) are
leading groups in the aviation and airline industry, which have assigned airline codes to more
than 5,000 local, regional and international airlines. Before the COVID-19 crisis, 1,126 commercial
airlines operated more than sixteen million flights, carrying 4.5 billion customers annually [1].
American Airlines, a major US (United States) airline, operates approximately 5900 flights
per day (translating to ~70000 flights per month) with a ~900-strong fleet size [2]. Running airline
operations smoothly and cost-effectively on such a massive scale requires intricate planning and
scheduling. Airline companies often use optimization tools to achieve this end in flight scheduling,
fleet assignment, aircraft maintenance and crew scheduling. Specifically, airline crew scheduling is
a computationally intensive problem with large datasets and numerous complex constraints. It is
typically solved sequentially as a two-part problem - crew pairing followed by crew rostering.

• Crew pairing: The system sequences the list of flight legs for a defined period and refers to each
as a ‘crew pair’.

• Crew rostering: Crew rostering optimization uses flight pairings generated by flight pairing
optimization, along with crew details such as base location and crew count, and assigns a
pre-defined number of crew members to each pairing to create a ‘crew roster’.

In this paper, we apply a hybrid classical-quantum approach to solve the crew pairing problem.
An airline crew pairing is a sequence of flight legs or duty periods within the same fleet, starting
and ending at the same home crew base. This step comes after the fleet assignment in the airline
resource planning process. Once crew pairings are created, airlines can assign crew members
tasks on their designated flights.

The total crew operating costs (including salaries, benefits and expenses) are the second largest
operating cost for an airline, after fuel costs [3]. Thus, even a small percentage of savings in crew

| 1

2 |2 |

expenses through optimal crew scheduling translates to a sizable cost reduction for the airline [4].
This makes airline crew scheduling one of the most critical components of the airline
scheduling process.

3.
Business Drivers and Challenges
Effective assignment of crews to a flight is an essential aspect of airline planning due to
several factors:
• Scale and complexity of flight networks: Airlines must plan for many flights operating daily

over multiple crew bases. A robust flight network must be generated and maintained by the
airlines to assign crews to each flight effectively.

• Flight planning: Compared to cabin crew, cock-pit crew generation is more complex as pilots
are qualified to fly specific aircraft. Efficient planning of crew pairings over several flight legs
must account for pilot specifications while covering as many flights as possible in the network.

• Risk mitigation: Several factors could affect the smooth flow of daily flight operations
(e.g., Severe weather, flight cancellations, etc.). Contingency plans for crew members must be
kept in place in case of flight disruptions.

• Regulatory constraints: Regulatory constraints are set up by governing bodies and vary from
region to region and keep the work assigned to crew members in check. These regulations
include the number of flying hours, number of flights assigned and minimum transit/rest time
between flights.

The crew pairing problem aims to cover all flight legs in the airline’s flight schedule while satisfying
all legal, regulatory and operational constraints and keeping the cost associated with constructing
the pairings to a minimum. The crew pairings generated must be in accordance with the policies
set up by airline governing bodies regarding crew working hours, rest/vacation time, compensation
and penalties.

4.
Problem Formulation
The airline crew pairing problem uses the airline's flight schedule to generate an optimal list of
pairings while accounting for the required constraints. It is traditionally formulated as either a Set
Partitioning or a Set Cover Problem [3]. In the case of set partitioning, each flight leg is covered only
once, i.e., there are no deadhead flights. On the other hand, a set cover problem allows for flight
legs to be covered in more than one pairing, where the over-coverage represents deadhead flights.
While a set partitioning model might yield a better solution, it may also produce infeasible solutions
in problems like ours where an ideally portioned solution does not exist.

On the other hand, a set covering model could lead to faster convergence in the case of
large-scale crew pairing optimization problems [3]. Our solution has modeled the problem as a
Set Cover Problem. The following section describes our approach to problem formulation.

| 3

4.1 Decision Variables
The decision variables in this problem are binary variables, which indicate the selection of a
particular pairing from a set of legal pairings, i.e., if the decision variable xj has a value of 1, it
represents that the jth pairing is selected. The number of decision variables equals the number of
pairings (k).

4.2 Objective
This paper considers two objectives to optimize as described below. Each objective has a weight
assigned to it. Setting either weight as zero formulates the problem as a single objective problem.

• Pairing cost optimization: The total cost incurred by the airline due to the allocation of different
pairings has been minimized.

• Deadhead minimization: The total cost incurred by the airline due to deadhead allocations of
flight legs should be minimized.

4.3 Constraints
The pairings created in accordance with the governing policies are known as legal pairings and are
based on several constraints:

• Common airport between legs: Keeping the arrival airport of the previous leg and the departure
airport of the next leg the same allows for the smooth assignment of crews to their flights and
reduces time delays and overall cost of the crew pairing.

• Rest time: The minimum and maximum rest time between flight legs for crew members,
including the layover, transit or normal rest time between flights.

• Common base for a pairing: The start and end airport of a pairing should be the same.
This airport should be one of the airline's bases, which is a subset of all the airports that the
airline services. This ensures the airline does not incur additional costs in transporting the crew
from or to the assigned pairing.

• Flying hours: The number of in-flight duty hours for cabin and cockpit members is strictly
maintained due to the concentration required during the duty periods.

∑

×+((Min Wp cjxj PDhdwdh aixj –1
P

j=1

∑
F

i=1(

(((

∑
P

j=1

P = number of Pairings
F = number of Flight Legs

cj = cost of pairing pj

wp = weight for pairing objective
wdh = weight for deadhead objective

PDhd = penalty for the number of deadheads
{1, if pairing pj is selected

0, otherwise
xj =

{1, if �light fi is covered in pairing pj

0, otherwise
aij =

• Number of flights: Crew members could be part of flights either as part of their duty periods
or as deadhead flights while moving to their destination. In accordance with airline regulations,
crew members must be given a specific number of flights to be a part of and compensated
as such.

• Leg coverage: All flight legs that the airline operates should be covered by at least one
selected pairing.

∑ ≥aijxj 1, 2, ..., F1, ∀i ∈
P

j=1

{ {

5.
Solution Methodology
Our current work explores the application of quantum annealer-based optimization for crew
rostering along with a comparison to an open-source Python-based classical optimizer.

Solving any optimization problem requires two steps - one, formulating the problem, and two,
obtaining the optimal solution to the formulation. The first step constitutes understanding the
problem and formulating it in mathematical terms. This mathematical formulation can be done
in several ways, such as Linear Programming (LP), Mixed Integer Linear Programming (MILP),
non-linear and quadratic. Based on the convenience of formulating the problem and the availability
of algorithms, techniques and tools to solve the model, a method of formulation is chosen.
Once the problem is formulated, the second step in the optimization problem is obtaining the
solution with the most optimal cost. As the problem size increases, the problem cannot be solved
analytically and brute force methods theoretically could take exponentially longer. Hence, numerical
approaches are utilized to provide approximate solutions to large optimization problems.

In the context of the crew pairing optimization problem, two approaches are typically followed.
The first approach generates a set of legal pairings deterministically, followed by selecting the
optimal subset of those legal pairings in the optimization step. The second approach combines the
steps to dynamically generate pairings within the optimization step itself [4].

The second approach requires an assumption to be made about the number of pairings generated.
It also considers all combinations of the set of flight legs which would cause the number of decision
variables to exceed the capacity of current computing technology [5]. A separate legal pairing
generation approach alleviates this problem.

Moreover, the legality of a pairing is defined by Federal Authority rules and regulations, labor
agreements & government safety regulations. Such constraints cannot be violated for a penalty,
which would typically be the case in penalty models such as Quadratic Unconstrained Binary
Optimization models.

Hence, the first approach ensures that such constraints are satisfied while generating the set of
legal pairings, while the optimization step focuses on the business objectives and constraints of the
airline. For these reasons, we have followed the first approach in this paper.

4 |

| 5

5.1 Flight Network Generation
The flight schedule is provided with the following information:

1. Flight leg number

2. Arrival and departure airports

3. Date of departure and arrival

4. Estimated departure and arrival time

The first step is to create a network of connected feasible flight legs. The connectivity is based on
whether the consecutive flight legs satisfy two of the constraints explained in section 4.3.

• Departure airport for the next leg should be the same as the arrival airport of the previous leg

• Inter-flight rest time should be within the specified range

This can be visualized as a pairing tree, as illustrated in Figure 1. Each root node corresponds to a
flight leg with the edges connecting it to feasible succeeding flight legs. The process is repeated
for all available flight legs in the schedule, creating a complete flight network covering all
possible connections.

5.2 Traversing the Flight Network
After the generation of the flight network, the next step is to create a set of legal pairings compliant
with the next set of constraints. Using Depth-First Search, we traverse through the network, taking
one root node at a time, and check if the flight sequence satisfies the following constraints:

• Flying hours for a pairing must be within a specified range

• The number of flight legs in a pairing must be within a specified range

• The arrival airport of the last node in the pairing should be the same as the departure airport of
the first/root node

Due to the size of the flight network, it is not possible to generate a feasible solution
(a set of pairings that covers all flights at least once) in a brief time using the original DFS.
Hence, it is enhanced by varying the step length of backtracking to cover more unique flight nodes.

Figure 1: Pairing tree

{1: [2],

2: [3, 4],

3: [5, 6],

5: [8, 9],

6: [10],

7: [11] {

4: [7],

1

2

3

5 6 7

111098

4

[4] Figure 2 shows the difference in unique flight nodes covered without backtracking vs. when
backtracking with a step length of two. Apart from this, backtracking also reduces the overall
computation time of graph traversal.

6 |

Figure 2: Depth first search with backtracking

Since the traversal of the graph with different starting nodes is independent of each other,
multiprocessing can be used to decrease the computational time further. The overall pairing
generation process is decomposed into independent subprocesses based on starting flight nodes.
Each process returns a set of legal crew pairings starting from a given flight node. By running ‘n’
independent processes in parallel, the legal crew pairing generation process is significantly
sped up. [4] Further, since the constraints demand that the start and end of the pairing should be
one of the airline's base airports, flights departing from a non-base airport need not be considered
as a root node for traversal.

5.3 Optimization Using Set Cover Problem
Once the set of legal pairings is created, a Set Cover Problem can be formulated, as explained
in section 4. In this step, we select the optimal number of legal pairings that cover all flight legs.
Since the legality of pairings has already been enforced, the optimization problem has a more
efficient search space, reducing the number of binary variables required and, subsequently, the
computational time. In this paper, we take three approaches to optimization as described below.

5.3.1 Classical Optimization-based Approach
We have formulated the problem as a binary linear programming problem. Classical LP solvers
have been used for decades to solve optimization problems for industry and academia. For the
crew rostering problem, the open-source Python library 'Pyomo' has been utilized to model the
optimization problem. Pyomo can be used to define abstract problems, create concrete problem
instances and solve these instances with standard classical optimization routines. Pyomo provides
a capability that is commonly associated with algebraic modeling languages like AMPL and GAMS.
Pyomo leverages the powers of the Coopr software, which integrates Python packages for defining

1 1 1

2

4

7

11

2

3

5

8 9 10 11

6 7

4

2

3

5

9

Step=0 Step=2

Step=0

Step=2

| 7

optimizers, modeling optimization applications and managing computational experiments.
COIN-OR Branch and Cut (CBC) solver has been used to solve the problem. It is an open-source
mixed-integer linear programming solver.

5.3.2 Quantum-inspired Optimization Approach
The problem is formulated as a Binary Quadratic Model (BQM) using the Dimod package from
D-wave’s Ocean SDK. Simulated Annealing is used to solve the problem. D-wave's Simulated
Annealing Sampler (SAS) is commonly used in heuristic optimization problems and approximate
Boltzmann sampling, well suited to finding solutions for large problems. SAS approaches the
equilibrium distribution by performing iterative updates at a sequence of decreasing temperatures,
terminating at a target value β. Each spin is updated once in a fixed order per β.

T = Thermodynamic temperature (kelvin)

The Pyomo Formulation and CBC solver took exceedingly substantial time in our experimentation.
To solve the multi-objective problem, CBC needed help finding a solution within 2 hours on the
smaller datasets, while Pyomo faced a similar issue in problem formulation with increasing problem
sizes. Hence, in the multi-objective problem, SAS has been employed to find solutions within a
feasible time.

5.3.3 Quantum Annealer-based Approach

5.3.3.1 Why Quantum
Quantum annealers are essentially ISING machines that help solve combinatorial optimization
problems. Solving optimization problems with quantum annealers requires encoding industry
and academia problems to energy minimization problems. Quantum annealers employ energy
encoding to map problems to hardware and follow a nature-inspired quantum optimization
paradigm. It allows the system to evolve through time while maintaining control over the pace of
evolution, and when given enough time, a system will achieve its lowest energy point.

While classical algorithms such as Simulated Annealing also employ a similar phenomenon,
quantum annealers can improve performance and quality over such classical algorithms using
quantum mechanical phenomena like quantum tunneling.

In the context of crew pairing, the complexity of problems increases with an increase in the number
of flights and number of airline bases. Current classical optimization systems have been developed
over decades and provide good approximations for medium-sized problems, but the run time
increases with an increase in problem size. Quantum solvers such as hybrid classical-quantum
solvers on quantum annealers and quantum-inspired classical optimization algorithms (QIO)
can improve solution quality while reducing the run time for certain types of energy landscapes
representing a particular class of problems.

1
= :β

k TB
kBBoltzmann distribution: Boltzmann constrant

8 |

5.3.3.2 Approach
D-wave’s quantum annealers currently support optimization models in the form of Constrained
Quadratic Models (CQM) or Binary Quadratic Models (BQM) to define objectives and constraints.
BQMs (Binary Quadratic Models) are further transformed into Quadratic Unconstrained Binary
Optimization (QUBO) or equivalent ISING formulation in ferromagnetism.

To use quantum annealers, the optimization problem must first be converted to CQMs (Constrained
Quadratic Models) or BQMs. CQMs, as the name suggests, are constrained models with binary or
integer decision variables. BQMs have only binary decision variables, and the constraints must be
converted into an unconstrained problem using the penalty method. In this method, the constraints
are added to the objective function with a penalty. If a solution fails to satisfy a constraint, the
corresponding penalty will be added to the total cost.

Dimod has been utilized for the formulation of the CQM model. D-wave’s Leap Hybrid Solver has
been used to solve the problem. It implements state-of-the-art classical algorithms and intelligent
allocation of the quantum computer to parts of the problem where it benefits most.

6.
Results & Discussion
6.1 Data Description

Table 1: Dataset description

Attributes DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8

Dataset

Number of legal
pairings

1013 1500 1013 1500 1500 1013 5613 5886

Initial number of
legal pairings

2824 4099 5742 8483 11630 13405 103440 148460

Constraints

Inter-flight
rest time

Min 45 mins

Max 2 days

Flying
hours

Min 1

Max 30

Number of
flights

Min 2

Max 14

| 9

Table 2: Solution quality KPIs (Key Performance Indicators) for DS4

Attributes
Single Objective
(100% Pairing)

Single Objective
(100% Deadhead)

Multi-objective
(70% Pairing + 30% Deadhead)

Solver
CQM

Hybrid
BQM
SAS

Pyomo
+ CBC

CQM
Hybrid

BQM
SAS

Pyomo
+ CBC

CQM
Hybrid

BQM
SAS

Pyomo +
CBC*

Number of
Pairings 363 639 410 557 645 580 402 695

No
solution

Number of
Deadhead Flights 330 500 6 67 488 8 128 465

Number of Flights
Missed 0 1 0 0 2 0 0 4

Formulation
Time(s) 1.15 4.17 1.54 33.29 40.88 0.472 31.91 39.56

Solver Time(s) 5 122.81 5328 13.95 100.71 20.37 13.95 106.59

Total
Flying
Hours

Min 1.37 1.37 1.37 1.37 1.37 1.37 1.37 1.37

Max 21.18 23.98 22.46 25.7 24.9 20.3 24.02 23.98

Mean 6.17 3.8 5.46 3.41 3.75 3.14 4.92 3.42

Std. Dev 6 3.98 8 3.46 4.07 2.92 5.25 3.47

Total
Inter-
flight
Rest

Minutes

Min 46 46 46 46 46 46 46 46

Max 14908 12651 12076 12584 12584 11388 13409 13468

Mean 2360.63 1503.93 988.58 1266.56 1517.55 855.41 1730.27 1400.51

Std. Dev 2872.54 1728.93 1278.42 1535 1877.36 1336.21 2271.42 1607.21

*Note: In Multi-objective problems, CBC could not find a solution within 2 hours of execution.

6.2 Solution Quality
The following table details the comparative results of the different approaches on a mid-sized

problem (DS4) with 1500 flights and 8483 pairings.

10 |

Table 3: Performance KPIs across datasets

Number of
Pairings

Number of
Deadheads

Flights
Missed

Formulation
Time(s)

Solver
Time(s)

DS1

Pairing
Only

CQM 170 257 0 0.3 5

SAS 402 408 4 0.59 14.46

CBC 164 6 0 0.473 4176

Deadhead
Only

CQM 323 64 0 2.06 5

SAS 438 391 4 2.61 13.19

CBC 306 7 0 0.124 9.89

Multi
Objective*

CQM 266 102 0 2 5

SAS 409 417 4 2.55 12.74

DS2

Pairing
Only

CQM 326 361 0 0.53 5

SAS 607 473 1 1.11 33.65

CBC 482 8 0 0.462 4824

Deadhead
Only

CQM 488 93 0 5.76 5

SAS 577 472 1 7.09 27.09

CBC 555 8 0 0.209 13.21

Multi
Objective*

CQM 399 137 0 5.45 5

SAS 636 518 2 6.76 27.01

DS3

Pairing
Only

CQM 200 283 0 0.72 5

SAS 409 399 2 1.99 63.27

CBC 220 8 0 0.576 4752

Deadhead
Only

CQM 333 52 0 15.15 6.44

SAS 436 392 4 18.46 51.1

CBC 255 5 0 0.403 28.856

Multi
Objective*

CQM 249 74 0 14.44 6.44

SAS 411 433 2 17.73 53.35

DS5

Pairing
Only

CQM 292 490 0 1.64 5

SAS 566 501 4 8.01 221.31

CBC 304 6 0 1.52 5832

Deadhead
Only

CQM 510 70 0 61.6 26.27

SAS 631 541 5 76.62 180.06

CBC 519 7 0 0.763 28.47

Multi
Objective*

CQM 344 182 0 59.42 26.27

SAS 647 523 4 74.57 189.21

DS6

Pairing
Only

CQM 232 276 0 1.78 5

SAS 420 361 6 17.23 340.01

CBC 276 8 0 1.32 6436

Deadhead
Only

CQM 339 57 0 116.72 47.89

SAS 452 441 5 146.87 285.36

CBC 280 5 0 0.73 95.62

Multi
Objective*

CQM 236 105 0 116.25 47.89

SAS 426 410 7 146.13 299.67

6.3 Performance Results

For the other datasets, we provide only performance KPIs comparing the different approaches.

DS7
Pairing
Only**

CQM 1917 444 0 2872.03 745.16

DS8
Multi

Objective**
CQM 2153 245 0 2420.70 639.52

*Note: In Multi-objective problems, CBC could not find a solution within 2 hours of execution.
**Note: In larger datasets, Pyomo was unable to formulate the model within 2.5 hours of execution, and Dimod was unable to
convert CQM to BQM with the available RAM (30 GB).

6.4 Visualizations

This section illustrates the comparative performances detailed above. Figure 3 compares the time
taken for the different solvers to find an optimal solution. Figure 4 compares the number of pairings
selected by the solvers, whereas Figure 5 compares the number of deadheads.

Figure 3 Solver time (in seconds) by dataset

• Considering pairings as the only objective, the CQM solver consistently takes less time than
SAS and CBC, with CBC taking 1000x the time taken by CQM

• In the case of deadheads as the only objective, the time taken by SAS increases significantly
with increasing problem size, whereas CQM and CBC time does not increase much

• In Multi-objective, CBC is unable to find a solution on DS1-DS6 within 2 hours. For all objective
implementations, as the problem size increases (DS7 & DS8), Pyomo is unable to formulate the
problem within 2.5 hours of execution, and Dimod is unable to create the BQM model within
2 hours of execution.

| 11

Figure 3: Solver time (in seconds) by dataset

Figure 4: Number of pairings by dataset

Figure 5: Number of deadheads by dataset

12 |

6.5 Analysis of Results

Quality of solution:

• For our experiments, we assess the quality of feasible solutions using the number of pairings and
number of deadheads. Solutions not covering all flight legs are considered infeasible.

• While considering only pairings as a single objective, we can see from Table 2 that the best
quality of solution is given by Pyomo & CBC; however, the solver takes over 1000x the time
taken for the quantum solver. From the visualization, we can also see that the CQM solver takes
the least amount of time across all datasets. Further, as the problem size increases, Pyomo is
unable to formulate the model within 2.5 hours, whereas Dimod was unable to create a BQM
model for SAS due to exhausting computational resources.

• With the deadhead-only objective, CBC and CQM were able to give feasible and comparable
solutions. From Table 2, we can see that while CBC gave a lesser number of deadheads, CQM
returned a lesser number of pairings and took less time to solve. Table 3 further supports the
claim of comparative solution quality between CQM and CBC solvers.

• In Multi-objective problems, CBC could not find a solution within 2 hours of execution for the
smallest dataset. As the problem size increased, Pyomo was unable to formulate the problem.
Since SAS gave an infeasible solution and did not cover all flights, only CQM could handle the
multi-objective problem and give feasible results.

• Across all implementations, SAS was unable to cover all flight legs, in every dataset while also
returning more pairings and deadheads than the CQM and CBC solvers.

Scalability of solution: The CQM quantum annealer provides a scalable solution, as shown in
Table 3. As the problem size increases, not only can the quantum solution return a valid solution
within a feasible time, but after a specific problem size, Pyomo cannot formulate the multi-objective
problem for CBC, and Dimod cannot create a BQM model for SAS. Further, as evident from
Figure 3, CQM provides a consistently lower time to solution across all implementations compared
to SAS and CBC solvers.

| 13

| 92 |8 | | 5| 11| 7www.mphasis.com

N
R

27
/1

1/
23

 U
S

LE
TT

ER
 B

AS
IL

85
04

UK
Mphasis UK Limited
1 Ropemaker Street, London
EC2Y 9HT, United Kingdom
T : +44 020 7153 1327

INDIA
Mphasis Limited
Bagmane World Technology Center
Marathahalli Ring Road
Doddanakundhi Village, Mahadevapura
Bangalore 560 048, India
Tel.: +91 80 3352 5000

For more information, contact: marketinginfo.m@mphasis.com

Copyright © Mphasis Corporation. All rights reserved.

USA
Mphasis Corporation
41 Madison Avenue
35th Floor, New York
New York 10010, USA
Tel: +1 (212) 686 6655

About Mphasis
Mphasis’ purpose is to be the “Driver in the Driverless Car” for Global Enterprises by applying next-generation design, architecture and
engineering services, to deliver scalable and sustainable software and technology solutions. Customer centricity is foundational to Mphasis,
and is reflected in the Mphasis’ Front2Back™ Transformation approach. Front2Back™ uses the exponential power of cloud and cognitive to provide
hyper-personalized (C = X2C²

 ™= 1) digital experience to clients and their end customers. Mphasis’ Service Transformation approach helps ‘shrink
the core’ through the application of digital technologies across legacy environments within an enterprise, enabling businesses to stay ahead in a
changing world. Mphasis’ core reference architectures and tools, speed and innovation with domain expertise and specialization, combined with an
integrated sustainability and purpose-led approach across its operations and solutions are key to building strong relationships with marquee clients.
Click here to know more. (BSE: 526299; NSE: MPHASIS)

7.
References
[1] https://financesonline.com/number-of-flights-worldwide/ – Number of Flights Worldwide in

2022/2023: Passenger Traffic, Behaviors, and Revenue

[2 https://www.id1.de/2021/10/03/airline-statistic-how-many-daily-flights-do-airlines-operate/ -
Airline Statistic: How Many Daily Flights Do Airlines Operate?

[3] https://arxiv.org/abs/2003.06423 - On Initializing Airline Crew Pairing Optimization for Large-
scale Complex Flight Networks. Divyam Aggarwala, Dhish Kumar Saxenaa, Thomas Bäckb and
Michael Emmerichb

[4] https://ieeexplore.ieee.org/abstract/document/8628699 - On Large-Scale Airline Crew Pairing
Generation. Divyam Aggarwala, Dhish Kumar Saxenaa, Michael Emmerichb and Saaju Paulose.

[5] https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3919d9221641d9a3eeaa975d
8798d8a4b365c135 - Airlines’ Crew Pairing Optimization: A Brief Review. Xugang Ye

https://www.mphasis.com/home.html
https://financesonline.com/number-of-flights-worldwide/
https://www.id1.de/2021/10/03/airline-statistic-how-many-daily-flights-do-airlines-operate/
https://arxiv.org/abs/2003.06423

