
Quantum Annealer-based Portfolio Optimization
Whitepaper by Rohit Patel, AVP – Data Science and Quantum Computing |  
Ashutosh Vyas, Senior Data Science Manager – Mphasis NEXT Labs | Narayan Mishra, Assistant Manager – Data Science



Contents

Introduction 1

Business Objectives   2

Key Factors to Build an Optimal Portfolio 2

Assumptions in Building Portfolios Using MPT 3

Modeling Portfolio Optimization Problem 3

Experiment & Results 7

References 7



1.
Introduction
Financial analysis is a critical tool to optimize investments in securities. It directly affects the 
quality of investment decisions made by an entity. One such area of financial analysis is portfolio 
optimization, where the investors for a given budget, are suggested a subset of investment  
options to maximize return while minimizing risk. Different investors have different risk appetites, 
which require personalization of the recommended portfolios for a particular type of investor.  
For example, generally, investors in a lower age bracket tend to be less risk-averse than investors  
in a higher age bracket. 

The concept of portfolio optimization essentially involves return maximization while ensuring 
minimization of risk with the given set of securities across or within different asset classes.  
Modern portfolio theory, pioneered by American economist Harry Markowitz, provides a method to 
realize the goal of portfolio optimization mentioned above. It builds on the idea of diversification, 
where securities should be viewed from the point of interdependence of overall risk and return 
rather than looking at each of them in isolation. It takes the weighted sum of average returns of 
individual assets to calculate portfolio return and derives portfolio risk as a function of variance in 
return of each asset and correlations between a pair of assets.

Using the methodology presented by modern portfolio theory, one can generate multiple risk-return 
scenarios by varying the weighted allocation of budget across a subset of investment options from 
a given set. Plotting these different combinations on a 2-dimensional graph with the portfolio’s risk 
on X-axis and the portfolio’s return on Y-axis, one can visualize the best risk-return combinations 
for investors of different risk appetites. By identifying and joining the points representing the most 
efficient portfolios from the above combinations, an upward sloping curve called ‘efficient frontier’ 
can be drawn. Any investment choice that falls underneath the curve is less optimal for a given 
portfolio risk.

|  1
Figure 1: Efficient Frontier [3]

Each point on this line represents an 
optimal combination of securities that 
maximizes the return for any given 
level of risk (standard deviation).

These dots represent portfolios that
are inferior to the portfolios on the 
ef�cient frontier - they either offer the 
same returns but with more risk, or 
they offer less return for the same risk.
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Based on the idea above, for a given risk level, optimal and suboptimal portfolios can be built 
based on the proportion of budget allocated for each of the securities under consideration.  
Optimal portfolio selection hence becomes an optimization problem where the aim is to identify the 
subset of securities and the proportion of budgets allocated to them to maximize the return for a 
given risk level. Portfolio optimization is a major research area where different heuristic and  
non-heuristic methods are formulated and solve the problem. 

We here introduce the use of quantum computing, specifically quantum optimization, based 
approach to solve the portfolio optimization problem. Our approach makes use of quantum 
annealers and quantum-inspired optimization approaches to identify the right securities and 
distribution of budgets to build an optimal portfolio. Based on our experiments on stock data 
from DOW30, S&P500 and other indices, we have observed an improvement in performance with 
respect to execution time and portfolio quality.

2.
Business Objectives  
The core objectives of portfolio optimization are as follows: 

• Maximizing return on investment: Investors would always 
expect to get as much profit from an investment as possible 
given the risk appetite. Thus, the portfolio developer must 
keep this as an essential business objective. 

• Managing investor risk appetite: Different investors 
have different needs and appetites for return to risk 
tolerance factor. The goal of portfolio selection hence  
is to identify the most optimal portfolio as per investor 
risk appetite. 

3.
Key Factors to Build an Optimal Portfolio
The key factors that help in the development of a good investment portfolio are as follows:  

• Investment diversification: Management of unsystematic risk or non-priced risk, investment 
portfolios should be extensively diversified. A diversified portfolio protects the investors from the 
risk of losing money if a single asset underperforms.

• Identify the right investment opportunities: New investment opportunities across asset  
classes should always be tracked and monitored to keep up with the changing market behavior. 
This helps in better diversification of the resources and provides high-profit opportunities.

• Adapting to changing investment climate: Portfolio optimization is driven by analysis of the 
historical performance of securities under consideration. Careful selection of historical data is 
important to understand the parameters of the securities market.
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4.

Assumptions in Building Portfolios Using MPT 
To hold true, Modern Portfolio Theory, on which the notion of portfolio optimization is founded, makes 
the following assumptions:

• Frictionless markets: One of the assumptions is that markets are frictionless, meaning that there are 
no transaction costs, limitations or other market restraints. In practice, this is frequently discovered to be 
untrue. Because there are frictions in the market, applying the current portfolio theory is more difficult.

• Normal distribution: The normal distribution of returns is another assumption in the current portfolio 
theory. When utilizing the return data as inputs, it ignores notions like skewness, kurtosis and so 
forth. The returns are frequently found to be non-normally distributed. The modern portfolio theory’s 
violation of assumption makes it difficult to use once more.

• Dynamic coefficients: The data used in portfolio optimization contains few coefficients, such as the 
correlation coefficient. As market conditions change, the correlation coefficient may fluctuate.  
In some circumstances, the assumption that these coefficients remain constant may not be correct.

• Volatile market: Asset prices keep changing and this greatly impacts the assessment of someone 
investing in one specific asset for a long duration.

5.

Modeling Portfolio Optimization Problem 
Portfolio optimization and asset allocation problem for a given set of investment opportunities 
with different risk-return characteristics have many possible candidate solutions. Identifying the 
optimum portfolio which has a perfect trade-off between higher portfolio returns and lower portfolio 
risk is a non-trivial task. We here propose a quantum annealer-based optimization approach to 
build optimized investment portfolios for investors with different risk appetites. The approach to 
solving this problem is mentioned as follows: 

Calculate the annualized daily rate of return for each asset using the 
acquired daily price data of assets

Formulate optimization objective and constraints as QUBO/ISING models

Run optimization solvers

Calculate the annualized covariances between the daily rate of return values of all assets 
*The variance of the portfolio is referred to as portfolio risk and the standard deviation of the portfolio is referred  

to as portfolio volatility



In our experiments, we have considered 5 years of historical price data for stocks from DOW30, 
S&P500 and other market indices. Problem Formulation: Quantum annealer-based solvers require 
problems to be formulated as Binary Quadratic Models (BQM), specifically, ISING models or 
Quadratic Unconstrained Binary Optimization (QUBO) models.

In our portfolio optimization problem, the objective function has two parts: 

• Maximize portfolio return 

• Minimize portfolio risk

We can convert our multi-objective risk-return optimization problem, which is harder to formulate 
and solve, to a single objective optimization problem by considering financial ratios such as  
the Sharpe ratio or its derivatives. Sharpe ratio provides a measure of risk-adjusted return.  
Invented by Nobel prize winner William F. Sharpe, it is used to help investors comprehend the  
return on investment in relation to its risk. 

In article [2], the Sharpe ratio is defined in simple terms as the ratio which adjusts performance to 
account for an investor's excessive risk. It describes how much excess return one can realize for 
the volatility of holding a riskier asset. An investor can use the Sharpe ratio to see if the investment 
meets his needs by comparing two different portfolios with the same risk or returns. It is defined  
as follows:

(1)
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Where, Sa = Sharpe ratio

E = expected value

Ra  = asset return

Rb = risk-free return

σa  = standard deviation of the asset excess return 

Though the Sharpe ratio combines risk-return in a single formula, it does not lend itself to a 
quadratic objective formulation which is a prerequisite for quantum annealers-based solvers such 
as D-wave Leap Hybrid Solvers. A derivative of the Sharpe ratio, though, Chicago Quantum Net 
Score (CQNS) can solve this problem and convert our objective to a quadratic form.

In arXiv:2007.01430, the authors reformulated and transformed the Sharpe ratio formula into a 
linear quadratic form as equation (2):

(2)

However, because equation (2) is not a consistent quadratic form, the authors used the Chicago 
Quantum Net Scores (CQNS), which is provided by the equation:

(3)

Where Rw is a weighted portfolio and α ϵ R.

The below section describes the mathematical formulation of the portfolio optimization problem.

Decision variables: The decision variables are qi,k which represents the kth allocation in ith asset. 
There are two types of constraints: budget constraints and asset allocation constraints. The budget 
constraints signify that the total investment in assets should not exceed the available budget. 
The allocation constraints are required to be satisfied for each asset. If qi1,k1

 is 1, then the qi,k for all 
values of i and k should be 0 except for k1.

https://arxiv.org/abs/2007.01430
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qi,k ϵ {0,1} – Binary decision variable qi,k  refers to the kth part of the capital invested in stock i.

QUBO formulation: For QUBO formulation, the constraints optimization problems are converted 
into unconstraint optimization problems using the penalty method. In the penalty method, the 
constraints are added to the objective function by multiplying it with a penalty. The idea behind it is 
if the solution fails to satisfy the constraints, then the penalty will be added to the total cost.

Objective function: Minimize portfolio risk and maximize portfolio return (minimize CQNS)

(4)

(5)

Constraints: 

∑i ∑k k X qi,k ≤ 1, total capital invested in all assets individually should not exceed 100% of the  
capital available

∑i qi,k = 1 Ɐ i, for each single asset, only one capital option should be 1 

Where,

• i,j : index to represent financial assets (e.g., stocks, etc.)

• Max portion of total capital that can be invested in single asset is 0.1 or 10%

 • k ϵ {0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1}

 • k – capital invested in a single asset

• qi,k : Binary decision variable refers the kth part of the budget invested in the ith stock, ϵ {0,1}

• ri – annualized daily rate of return of single asset i

• Cov (i,j) – Covariance of annualized daily returns among assets i and j

α – parameter to leverage the effect of portfolio return in the objective function

Quadratic Unconstrained Binary Optimization (QUBO)

(6)

Where,

• A, B are large penalties for the constraints

• M - parameter to leverage the effect of the objective function in QUBO and to compensate  
 for the change in values of the rate of return of single assets

• α - parameter to leverage the effect of portfolio return in the objective function
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Why Quantum for Portfolio Optimization
Any optimization problem is solved in two steps. The first step is to comprehend the problem and 
formulate a mathematical solution. Linear Programming (LP) formulation, Mixed Integer Linear 
Programming (MILP) formulation, non-linear formulation and quadratic formulation are all examples 
of problem formulation. The convenience of defining the problem, as well as the availability 
of algorithms, methodologies and instruments to solve the formulation, are used to choose a 
formulation approach. The formulation's second stage is to obtain the solution at the lowest 
possible cost. Numerical approaches are employed to provide approximate answers since large 
optimization problems cannot be solved analytically, and brute force methods might theoretically 
take exponentially longer as the input size grows.

Optimization problems can be transformed into energy 
minimization problems, which quantum annealers can 
solve. Quantum annealers employ energy encoding to 
map problems to hardware and follow a nature-inspired 
quantum optimization paradigm. It allows the system to 
evolve through time while maintaining control over the pace 
of evolution, and when given enough time, a system will 
achieve its lowest energy point. Such phenomenon has been 
captured as part of classical algorithms such as Simulated 
Annealing. Quantum annealers deliver a performance and 
quality improvement of such classical algorithms by utilizing 
quantum mechanical phenomena like quantum tunneling 
for large optimization problems. Quantum annealers define 
issue objectives and constraints using Binary Quadratic 
Models (BQM), which are then transformed into Quadratic 
Unconstrained Binary Optimization (QUBO) or analogous 
ISING formulations in ferromagnetism.

In real-world market circumstances, the pool of financial assets contains a wide range of assets from 
which we must select assets for our portfolio. As can be seen, many funds contain more than 50 assets 
and allowing additional flexibility in portfolio creation will result in a portfolio with a large number of 
decision variables to be optimized. For example, S&P500 index has 500 assets and if we have buckets 
of 1% for each asset allocation, we have 101 buckets for each asset and in total, we will have 50500 
(= 500 x 101) decision variables to be optimized. For a high number of variables, standard portfolio 
optimization solutions such as Monte Carlo simulation may deliver lower performance. 

Portfolio optimization is an iterative procedure for selecting the best assets from a pool of 
possibilities. This problem necessitates the use of approximation tactics by the algorithm, as 
well as a traversal of all hypotheses to find the nearest solution. Such iterative computations 
are resource and time intensive; this is an excellent setting for a quantum computer, which can 
minimize computing time and improve the frequency with which portfolio optimization can be 
carried out. For certain types of energy landscapes reflecting a certain class of problems, quantum 
solvers such as hybrid classical-quantum solvers on quantum annealers and quantum-inspired 
classical optimization algorithms (QIO) can increase solution quality while reducing the run-time.

The following section captures the results of our portfolio optimization experiments. 
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6.

Experiment & Results

Classical Approach - Monte Carlo Simulation Quantum Annealing-based Solution

Infrastructure 16 GB RAM, Windows Machine D-Wave 2000Q Hybrid Solver

Dataset Stocks Daily Return Data of 30 Dow Jones stocks over 5 years

Run-time 13.69 s 0.33 s

Portfolio Return  
(Annualized)

16.01% 17.71%

Portfolio Risk  
(Annualized)

12.55% 12.93%

Portfolio Frontier
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The above diagram compares the portfolios built by Monte Carlo and the Quantum Optimization 
solutions. Amber dots above represent the portfolios built by Quantum Optimization solution and 
blue dots represent the result of the Monte Carlo simulation-driven portfolio. As per the results, 
Quantum Optimization delivers portfolios with better risk-return profiles than the Monte Carlo-based 
classical optimization solution.
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