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1. Executive Summary
Over the last two decades, Machine Learning (ML) has made great progress – leading to wider adaptation of Artificial 
Intelligence (AI) and transforming in businesses. Machine Learning works on the idea of learning from data generated 
by real-world processes. The learnings gained from the data is represented as a mathematical model.

The process of learning establishes a relationship between predictors and predicted variables. E.g., How income can 
function as a predictor variable to predict your ability to pay a loan. The predictor variables, known as features, used 
in training a model directly influence the performance of the trained model. Identifying and defining the right predictor 
variables as inputs to the ML model has been a challenge to the model developers especially in cases where either 
the number of features tends to become exceptionally large or relationships among features are complicated.

Using irrelevant or partially-relevant features in training an ML model negatively impacts the performance of the 
model and may lead to overfitting whereas excluding key features may result in underfitting. Therefore, careful 
selection and engineering of features play a crucial role in improving model KPIs such as accuracy, precision and 
recall where improving their generalization ability. 

The process of feature selection requires domain and technical expertise to identify the relevant features without 
much loss of information. Many effective feature selection algorithms are available which assist the model 
developers in this process.

In this paper, we introduce an innovative approach to feature selection that harnesses the power of quantum 
computing. We use high-dimensional datasets in the domains of malicious software detection and Parkinson’s 
disease detection to illustrate the application of the proposed feature selection methods. We additionally compare 
and benchmark our proposed method against various mainstream classical feature selection techniques.

2. Introduction/Business Context
The following graphic demonstrates the end-to-end Machine Learning development and deployment pipeline. 
Developing reliable predictive Machine Learning models in real-world situations requires careful selection of data, 
features, models and training techniques. Effective feature selection methods are integral to this pipeline as they 
significantly improve the training and prediction performance of ML methods.

Figure 1: End-to-end Machine Learning development and deployment using MLOps principles
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2.1 What is Feature Selection?
Feature selection is a critical aspect of feature engineering, which involves identifying and utilizing the most relevant data 
attributes to train Machine Learning models effectively. The feature selection process aims to reduce the number of input 
variables by eliminating redundant or irrelevant features, leaving only the most influential ones for the specific Machine 
Learning task. Implementing appropriate feature selection techniques not only streamlines the model training process by 
focusing on the most predictive features but also impacts training speed, enhances model performance and improves 
generalization performance, i.e., the ability to respond to unseen scenarios during the training process effectively.

Raw data serves as the fundamental input for Machine Learning algorithms. However, the high dimensionality of raw 
datasets can pose significant challenges, including excessive memory requirements, computationally intensive training 
processes and degraded model generalization performance due to the “curse of dimensionality” issue.  
Mathematically, a dataset can be represented as a matrix, where the columns correspond to features and the rows 
represent recorded samples. “Narrower” matrices that closely approximate the original data can address the “curse of 
dimensionality” problem. The process of finding these narrower matrices is known as dimensionality reduction, and it 
can be achieved through two main approaches: Feature extraction and feature selection.

Feature extraction involves deriving new data attributes from the existing ones, with the goal of preserving the most 
informative characteristics. In contrast, feature selection focuses on identifying and utilizing only the most relevant 
existing features, while disregarding those that do not significantly contribute to the learning process. Both techniques 
aim to enhance the performance of Machine Learning models. However, feature selection is preferred in scenarios where 
maintaining the original problem representation is critical or when the cost of acquiring and managing features is substantial.

2.1.1 Challenges in Feature Selection Process

Feature selection is an invaluable tool for data scientists, as it significantly enhances the efficacy of Machine Learning 
algorithms. The capability to identify and select pertinent features is crucial, as irrelevant, redundant or noisy features 
can impede an algorithm’s performance, leading to diminished accuracy, increased computational costs and 
suboptimal learning outcomes.

Feature selection techniques must address the following four important challenges:
• Class Imbalance

Class imbalance refers to a scenario where the distribution of classes within a dataset is uneven, with one or more 
classes being significantly underrepresented compared to others. Class imbalances frequently occur in real-world 
applications such as credit card fraud, machine failure, network intrusions in cybersecurity, etc. In the context of feature 
selection, class imbalance can lead to biased models that disproportionately prioritize the features associated with the 
majority class. Addressing this issue is critical to ensure that the feature selection process does not unduly favor majority 
class features while overlooking potentially crucial features pertaining to minority classes. 

• Dataset Shift

Dataset shift refers to changes in the underlying data distribution over time or across different operational environments. 
This phenomenon can pose challenges for feature selection methods, as the relationships between features and  
target variables may evolve, rendering the previously-selected features less relevant for new data distributions.  
Adapting feature selection techniques to effectively manage dataset shifts is crucial for maintaining robust model 
performance across varying scenarios and ensuring the continued relevance of the selected features. 

• Incremental Learning

Incremental learning refers to the process of updating a model’s knowledge base as new data becomes available over 
time. In the context of feature selection, this poses a challenge as the relative importance of features may shift with 
the introduction of new data patterns. To address this, incremental feature selection methods are necessary to adapt 
the model to evolving data trends, ensuring that the selected features remain relevant and informative as the model 
continues to learn from additional information. 

• Noisy Data

Noisy data refers to datasets containing errors, outliers or irrelevant information. Feature selection methods may be 
susceptible to noisy data, as irrelevant or erroneous features may be incorrectly deemed important. Robust feature 
selection techniques are essential to filter out noise and identify the most informative features, thereby preventing the 
inclusion of irrelevant information that may degrade model performance.
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2.1.2 Advantages of Feature Selection

Among many, the three important advantages of feature selection in building Machine Learning models are  
mentioned below:

• Reduces Training Time and Inference Time

Feature selection provides a significant advantage by streamlining both the training and inference phases of 
Machine Learning models. By eliminating irrelevant or redundant features, the dimensionality of the dataset is 
reduced, leading to more efficient computation and faster convergence during the training process. This acceleration 
is particularly valuable in resource-constrained environments, enhancing the overall efficiency of the model 
development lifecycle. Feature selection not only accelerates the learning process but also enables faster predictions 
during real-time inference, contributing to improved computational efficiency throughout the model’s lifecycle.

• Increase Model Interpretability

Carefully selecting a subset of relevant features enhances the interpretability of Machine Learning models.  
Feature selection allows practitioners to concentrate on the most influential variables, facilitating a clearer 
understanding of the underlying relationships between features and the target outcome. This transparency is 
invaluable in domains where model interpretability is critical, such as healthcare or finance, enabling stakeholders  
to make informed decisions based on a more comprehensible model structure. By focusing on the most noteworthy 
features, decision-makers can gain insights into the key drivers of model output, promoting trust and accountability 
in the decision-making process.

• Variable Redundancy

Feature selection plays a critical role by strategically filtering out redundant variables that carry overlapping or 
highly-correlated information. By retaining only the most informative features, the risk of multicollinearity is mitigated, 
enhancing the stability and reliability of the model. This process not only simplifies the model’s structure but also 
contributes to a more robust and generalizable predictive framework. By eliminating redundancies, feature selection 
helps to create a leaner and more efficient model, improving its ability to generalize effectively across diverse data 
scenarios while maintaining high predictive accuracy.

2.2 Overview of Classical Feature Selection Techniques
Classical feature selection methods are categorized into three types: filter methods, wrapper methods and 
embedded methods.

• Filter Methods

Filter methods are a feature selection technique that selects features based on specific criteria before constructing 
the model. Filter methods approach feature selection as a pre-processing step, independent of the subsequent 
learning algorithm. They rely solely on the inherent characteristics of the data and are computationally efficient, 
inexpensive, and excel at identifying and removing duplicate, correlated, and redundant features. 

Set of all features Selecting the best subset Learning algorithm Performance

Some of the filter methods are: 
 � Information Gain - Evaluates the worth of a feature by measuring the reduction in entropy, or uncertainty, in the  

 class label distribution when the feature is known.

 � Chi-Square Test - Assesses the independence between a feature and the target variable, selecting features   
 that have a strong association with the target.

 � Fisher’s Score - Ranks features by calculating the ratio of the variance between different classes to the   
 variance within each class, selecting features that maximize class separability.

 � Correlation Coefficient - Measures the linear relationship between a feature and the target variable, selecting  
 features that have a high correlation with the target.

 � Variance Threshold - Removes features with low variance if features with low variance do not contribute   
 significantly to the model’s predictive power.

• Wrapper Methods

Wrapper methods take a tailored approach to feature selection, aligning the process with the specific  
Machine Learning algorithm being applied to a given dataset. Utilizing a greedy search strategy, these methods 
systematically evaluate all combinations of features against a predefined evaluation criterion. This criterion is 

|  3



determined by the problem and may involve metrics such as p-values, R-squared or Adjusted R-squared for 
regression problems, or accuracy, precision, recall, or f1-score for classification tasks. Wrapper methods identify 
the optimal feature combination that yields the best performance for the designated Machine Learning algorithm, 
ensuring a highly-customized and efficient feature selection process.

Set of all features Consider subset of all features

Selecting the best subset

Learning algorithm Performance

Set of all features Consider subset of all features

Selecting the best subset

Learning algorithm Performance+

Three commonly used techniques under wrapper methods are: 
 � Forward Selection: Starts with an empty model and iteratively adds features that improve the model’s   

 performance the most, continuing until no significant improvement is observed.

 � Backward Elimination: Begins with a full model containing all features and iteratively removes the least   
 significant features, one at a time, until further removal reduces model performance.

 � Bi-directional Elimination (Stepwise Selection): Combines forward selection and backward elimination,   
 adding and removing features in each iteration to find the optimal set that improves model performance.

• Embedded Methods

Embedded methods amalgamate the beneficial aspects of both filter and wrapper approaches to feature selection. 
In embedded methods, the feature selection process is an inherent component of the classification or regression 
model development. These techniques perform feature selection and algorithm training concurrently, integrating the 
two processes into a unified framework. By seamlessly intertwining feature selection with model training, embedded 
methods leverage the strengths of both filter and wrapper methodologies, potentially yielding more efficient and 
effective outcomes.

Four commonly used techniques under embedded methods are:
 � Least Absolute Shrinkage and Selection Operator (LASSO) - Performs feature selection by adding an L1   

 regularization term to the linear regression model, which shrinks some coefficients to zero, effectively removing  
 less important features.

 � Ridge Regression - Unlike LASSO, Ridge Regression uses an L2 regularization term that penalizes large   
 coefficients but does not perform feature selection directly; instead, it reduces multicollinearity by  
 shrinking coefficients.

 � Tree-based Feature Importance - Evaluates the importance of features based on how frequently and   
 effectively they are used to split nodes in a decision tree or ensemble methods like Random Forests with   
 important features contributing more to the model’s predictive power.

 � Permutation Importance - Assesses feature importance by randomly shuffling each feature and measuring   
 the increase in the model’s error, with a larger increase indicating higher importance of the feature for  
 model predictions.

2.3 Shortcomings of Current Classical Methods
Classical feature selection techniques, such as filter methods, wrapper methods and embedded methods, offer 
distinct advantages and yet face specific limitations. Filter methods, though computationally efficient, may fail 
to capture crucial feature interactions essential for certain models, and often disregard dependencies among 
features. Wrapper methods are computationally intensive due to exhaustive search across the feature space, 
potentially leading to overfitting and reduced generalization performance. In addition, reliance on a specific 
Machine Learning algorithm limits the versatility of wrapper methods. Embedded methods, while integrating 
feature selection into the training process, may be constrained by model-specific limitations and add complexity  
to the implementation.

A common challenge across the feature selection techniques is sensitivity to hyperparameter settings, which 
poses a trade-off between computational efficiency and model effectiveness. Suboptimal choices of features 
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significantly impact overall performance, and therefore feature selection methods require careful tuning of 
hyperparameters. Therefore, model developers must navigate the trade-offs, considering factors such as available 
computational resources, dataset characteristics and the specific goals of the Machine Learning task when 
selecting an appropriate feature selection method.

The choice of feature selection technique requires a careful evaluation of the specific requirements and constraints 
of the problem at hand, weighing the potential benefits against the associated drawbacks and limitations.

2.4 Overview of Quantum Feature Selection
Quantum-enhanced Machine Learning is one of the primary areas of quantum computing research. The underlying 
framework of quantum logic maps well to the fields of linear algebra and mathematical optimization which are 
essential for building algorithms in Machine Learning. In addition to applying quantum computing for designing  
ML models such as Quantum Neural Networks (QNN), quantum techniques can drive an efficient feature  
selection process. 

In our current work, we frame feature selection as a combinatorial optimization problem, aiming to reduce 
dimensionality by removing irrelevant, noisy and redundant features while adhering to global constraints.  
The optimal trade-off between feature relevance and independence can be expressed as a Quadratic 
Unconstrained Binary Optimization (QUBO) problem with a parameter                  representing the desired 
balance. This QUBO formulation can then be solved using quantum computing methods, harnessing the unique 
capabilities of quantum algorithms for enhanced performance and scalability. Additionally, our discussion focuses 
on the performance and comparative analysis of quantum-based feature selection against existing classical 
methods, highlighting the potential advantages and implications for real-world applications.

3. Our Solution Approach
As we frame the feature selection problem as a combinatorial optimization problem, a good understanding of solving 
optimization problems is highly beneficial.

Solving an optimization problem involves two key steps: first, formulating the problem, and second, obtaining 
the optimal solution to the formulation. The initial step entails understanding the problem and expressing it in a 
mathematical format. An optimization problem mathematically is formulated in terms of decision variables, objective 
function and problem constraints. 

Decision variables are the variables whose values vary over a set and whose choice determines whether the problem 
is solved optimally and feasibly. E.g., assignment of a worker to a task. The objective function provides us with 
the mathematical definition of quantity to be maximized or minimized. In the example of worker assignments, the 
objective function can be defined in terms of worker productivity. Problem constraints define the rules that should 
be satisfied when solving the optimization problem. Taking the working example again, one constraint could be the 
number of hours per day a worker is employed.

This mathematical formulation can be achieved through various methods, such as Linear Programming (LP), Mixed 
Integer Linear Programming (MILP), non-linear or quadratic approaches. The choice of formulation method depends 
on the nature of the problem, the convenience of expressing it mathematically, and the availability of algorithms, 
techniques and tools to solve the resulting model.

Once the problem is formulated, the second step involves obtaining the solution with the most optimal cost.  
As problem size increases, analytical solutions become impractical, and brute-force methods can become 
exponentially more time-consuming. Consequently, numerical approaches are employed to provide approximate 
solutions to large-scale optimization problems efficiently.

We delve into these two steps for our feature selection problem in section 3.1 and 3.2.
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3.1 Optimization Problem Formulation
The primary objective of feature selection methods is to identify the most relevant features, either individually 
or in combination while discarding redundant and irrelevant ones. This process aims to preserve the essential 
information contained within the complete set of input variables concerning the target class. To measure relevancy 
and redundancy effectively, evaluation measures play a crucial role. We leverage information theory measures to 
quantify relevance, redundancy and the cooperativeness of features.

Several sets of information measures can be employed to evaluate relationships within features and with the 
target variable. Selecting the appropriate measure depends on the presence of specific feature types, such as 
categorical and numerical features, in the dataset and the consistency of the information measures in evaluating 
feature relationships. 

We have identified Mutual Information (MI) as the most suitable information measure for general Machine Learning 
datasets. Mutual information, also known as Information Gain (IG) or two-way interaction, quantifies the stochastic 
dependency between variables, making it an effective bivariate measure of correlation. By leveraging mutual 
information as the evaluation measure, we can effectively identify the most relevant features while discarding 
redundant and irrelevant ones, enhancing the performance and interpretability of Machine Learning models.

MI between continuous variables X and Y can be defined by I,

where ΩY and ΩX are the sample spaces corresponding to Y and X, p (x, y) is the joint probability density, and p(x), 
p(y) are the marginal density function.

For discrete variables Y and X, the MI formula takes the form:

While estimating Mutual Information (MI) between features, various heuristics are employed based on data types 
and sample sizes to obtain robust estimates. For continuous and discrete variable sets, nearest-neighbor and 
distance-based measures can be utilized. Alternatively, binning or discretization of continuous data can be applied to 
calculate MI using established formulas. 

Armed with the above knowledge, we define the decision variables, objective function and problem constraints for 
our problem below.

Decision Variables
In our case, decision variables are binary variables indicating the selection of a feature in the optimal list. Given a 
dataset of N+1 dimension where ‘N’ is the number of independent and an additional target variable, subsequently 
leads to ‘N’ binary decision variables.

Objective Function
Our optimization objective is to maximize feature relevance to the target variable while minimizing redundancy 
within features. We combine the obtained relevance and redundancy information, defining the overall objective as 
a maximization problem. The trade-off between relevance and redundancy is controlled by the hyperparameter  
‘  ’. To account for redundancy overflow, computed by considering (N*N – N) ) interactions between independent 
features (excluding N self-associations), compared to relevance computed from N interactions with the target, we 
divide overall redundancy by S, the total number of optimal features. This formulation aims to achieve maximum 
relevance and minimum redundancy, striking the desired balance through the ‘  ’ parameter’s adjustment.

Problem Constraints
In our case, the total number of features to be selected should not be greater than the desired number ‘S’ is 
considered as a constraint.

Finally, we mathematically define two optimization formulations: 

• Maximum Relevancy and Minimum Redundancy



In addition, we propose another type of objective formulation to check for maximum relevancy and maximum 
complement of information among the features, mentioned below:
• Maximum Complement and Maximum Relevancy

3.2 Solving the Optimization Problem
Solving an optimization problem with the decision variables, constraints and a quadratic objective function 
requires a non-linear solver. Here we make use of hybrid quantum annealers from D-wave while also comparing it 
against a classical algorithm which can be used to solve such formulations. Traditional classical approaches other 
than simulated annealing such as feature importance and permutation importance are explored in our datasets. 
Below we provide a brief overview of quantum and simulated annealing. 

Classical Optimization Approach
The problem is formulated as a Binary Quadratic Model (BQM) using the dimod package from D-Wave’s Ocean 
SDK. Simulated Annealing is applied to solve the problem. D-Wave’s Simulated Annealing Sampler (SAS) is a 
classical algorithm commonly used in heuristic optimization problems and approximate Boltzmann sampling, well 
suited to finding solutions for large problems. 

Quantum Annealer-based Approach
Quantum annealers are ISING machines that help solve combinatorial optimization problems. Solving optimization 
problems with quantum annealers requires encoding problems to energy minimization problems. Quantum annealers 
employ energy encoding to map problems to hardware and follow a nature-inspired quantum optimization paradigm. 
It allows the system to evolve through time while maintaining control over the pace of evolution, and when given 
enough time, a system will achieve its lowest energy point.

While classical algorithms, such as simulated annealing, also employ a similar phenomenon, quantum annealers 
can deliver significant performance and quality improvement over classical algorithms using quantum mechanical 
phenomena such as quantum tunneling. 

D-Wave’s quantum annealers currently support optimization models in the form of Constrained Quadratic Models 
(CQM) or Binary Quadratic Models (BQM) to define objectives and constraints. BQMs are further transformed into 
Quadratic Unconstrained Binary Optimization (QUBO) or equivalent ISING formulation in ferromagnetism. To use 
quantum annealers, first, the optimization problem must be converted to CQMs or QUBOs (Quadratic Unconstrained 
Binary Optimization). CQM, as the name suggests, are constrained models with binary or integer decision variables. 
QUBOs have only binary decision variables, and the constraints need to be converted into an unconstrained 
problem using the penalty method. In this method, constraints are added to the objective function with a penalty.  
If a solution fails to satisfy a constraint, then the corresponding penalty will be added to the total cost.

Dimod has been utilized for CQM formulation, while Qubovert has been utilized to formulate the QUBO model. 
D-Wave’s Leap Hybrid Solvers, which are used to solve the problem, implement state-of-the-art classical algorithms 
together with intelligent allocation of the quantum computer to parts of the problem where it benefits most.

4. Experiments & Results
For experimentation and testing of our approach, we utilize two high-dimensional datasets. The performance of 
quantum feature selection is assessed against three sets of feature selection methods, namely simulated annealing, 
and classical feature selection methods such as feature importance and permutation importance. We also evaluated 
the performance of QFS against the wrapper method - Scikit-learn’s Sequential Feature Selector. However, the time 
required for feature selection was substantial, ~ 45-60 minutes for an optimal feature subset of 5 to 20 features. 
Therefore, the results and discussion exclude wrapper methods.
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We utilize the above-mentioned feature selection methods, train a random forest ML model and log the set of 
classification evaluation metrics such as F1-score, accuracy, AUC-ROC score, etc. The subsequent sections 
describe the use case, their dataset description and the results obtained. 

Malicious Software Detection Dataset
In the contemporary digital landscape, the proliferation of malicious software, commonly known as malware, poses 
a severe threat to the integrity, confidentiality and availability of information systems. The ability to detect malware in 
real-time is imperative for preventing potential damage to systems and data.

The “TUNADROMD” dataset focuses on the intricate task of distinguishing between malicious software (malware) 
and legitimate software (goodware). The dataset consists of 4464 instances and 241 features and represents 
information on 80% of malware class labels and the remaining 20% about goodware. These attributes include 
various characteristics of software files or behaviors, such as file size, code patterns, permissions and many other 
factors that are relevant for distinguishing between malware and legitimate software. We utilize this dataset for 
malware software detection tasks and evaluate the performance of the random forest Machine Learning model 
utilizing different feature selection methods. 

TUNADROMD Dataset

Number of Variables 242

Number of Observations 4465

Variable Type - Numeric 2

Variable Type - Categorical 240

Parkinson’s Disease Dataset

Number of Variables 755

Number of Observations 756

Variable Type - Numeric 753

Variable Type - Categorical 2

Parkinson’s Disease Detection Dataset
Parkinson’s Disease (PD) is one of the most common neurodegenerative diseases with a high prevalence rate.  
The detection of PD-positive subjects is vital in terms of disease prognosis, diagnostics, management and treatment. 
Different types of early symptoms, such as speech impairment and changes in writing, are associated with 
Parkinson’s disease. 

The PD speech signal dataset consists of speech features extracted from 188 patients and sixty-four healthy 
controls, using a variety of speech signal processing techniques. It comprises of 756 instances and 754 features 
for the 75% class label of patients with Parkinson’s disease and the remaining 25% with no disease. We utilize the 
dataset for Parkinson’s disease classification and evaluate the performance of the Machine Learning model, as 
described in earlier sections.
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4.1 Performance Results
• Distribution of Mutual Information of Features with the Target Variable

TUANDROMD Dataset Parkinson’s Disease (PD) Dataset

• F1-Score vs. Feature subset cardinality for different Feature selection methods

TUANDROMD Dataset

TUANDROMD Dataset

Parkinson’s Disease Dataset

Parkinson’s Disease Dataset

• Accuracy vs. Feature subset cardinality for different feature selection methods
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• Accuracy & F1-Score vs. Alpha for QFS with varying Feature subset cardinality (K)

TUANDROMD Dataset

Parkinson’s Disease Dataset

• Accuracy & F1-Score vs. Feature subset cardinality (K) for QFS with varying Alpha

TUANDROMD Dataset

Parkinson’s Disease Dataset
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5. Analysis of Results 
• Quality of Solution

 � For accuracy and F1-score on the TUANDROMD dataset, the region between 20 to 100 feature subset   
 the results do not differ by the spread of accuracy across feature selection methods, suggesting comparable   
 performance across all methods.

 � As per the performance charts in Section 4.4, the performance score for the lower range of cardinality of the   
 feature subset is better for QFS compared to other feature selection methods for both datasets. This suggests  
 a good learning ability of QFS with limited data and feature sets.

 � In the results, we evaluate the mean accuracy and mean F1-score of the random forest model across a range   
 of cardinality of feature subset and alpha values (trade-off between relevancy and redundancy). For the dataset  
  used in our experiments, we witness an increase in performance KPIs with an increase in alpha values.  
 However, this trend may depend on the nature of the dataset. 

 � As per the above analysis, we also assess the mean accuracy and mean F1-score for different feature subsets  
  and witness an increase in performance KPIs with an increase in the cardinality of the optimal feature subset.

 � We also observe a crucial role of two hyperparameters in our algorithm: Feature subset cardinality (K) 
 and Relevancy to Redundancy ratio (Alpha). For the TUANDROMD dataset, optimal performance is   
 achieved at an Alpha value between 0.7 and 0.9. The relevancy of features plays a critical role in attaining   
 optimal performance for Machine Learning algorithms, highlighting the importance of this hyperparameter.   
 This finding encourages us to explore alternative formulations that prioritize maximum relevancy and maximum  
 complementarity among features, aiming to further enhance the algorithm’s performance. By adjusting and   
 carefully tuning these hyperparameters, we aim to achieve a more refined and effective feature  
 selection process.

• Scalability of Solution
 � The CQM quantum annealer provides a scalable solution. For the optimization problem we formulated,   

 quantum annealers demonstrate superior performance compared to the simulated annealing solver for both   
 problem types, which involve 241 and 754 decision variables, respectively.

6. Conclusion
In this whitepaper, we have explored the potential of Quantum Feature Selection (QFS) as a powerful tool for 
addressing the challenges in high-dimensional datasets in Machine Learning. By framing feature selection as a 
combinatorial optimization problem and leveraging quantum computing methods, we demonstrated how QFS can 
effectively reduce dimensionality while balancing feature relevance and independence. Our approach not only aligns 
with the core principles of quantum computing but also offers a scalable and efficient alternative to classical feature 
selection methods.

Through experimentation and analysis, we evaluated the performance of QFS against traditional methods, including 
simulated annealing and classical feature selection techniques such as feature importance and permutation 
importance. The results reveal that QFS exhibits a strong learning ability, particularly with limited data and 
feature sets, and outperforms other methods in the lower range of feature subset cardinality. Furthermore, the 
hyperparameters of feature subset cardinality and the relevancy-to-redundancy ratio (Alpha) were found to play 
crucial roles in optimizing the performance of QFS.

The scalability of our solution was further validated by the performance of the CQM quantum annealer, which 
demonstrated superior results compared to simulated annealing across different problem types involving large 
decision variables. These findings highlight the significant potential of quantum computing in enhancing feature 
selection processes, offering a promising avenue for future research and application in real-world scenarios.

Overall, our work underscores the importance of quantum-enhanced techniques in advancing Machine Learning 
methodologies, paving the way for more efficient, scalable and effective solutions to complex problems in the field.

|  11



About Mphasis
Mphasis’ purpose is to be the “Driver in the Driverless Car” for Global Enterprises by applying next-generation design, architecture and 
engineering services, to deliver scalable and sustainable software and technology solutions. Customer centricity is foundational to Mphasis, and 
is reflected in the Mphasis’ Front2Back™ Transformation approach. Front2Back™ uses the exponential power of cloud and cognitive to provide 
hyper-personalized (C = X2C2

TM  = 1) digital experience to clients and their end customers. Mphasis’ Service Transformation approach helps 
‘shrink the core’ through the application of digital technologies across legacy environments within an enterprise, enabling businesses to stay 
ahead in a changing world. Mphasis’ core reference architectures and tools, speed and innovation with domain expertise and specialization, 
combined with an integrated sustainability and purpose-led approach across its operations and solutions are key to building strong relationships 
with marquee clients. Click here to know more. (BSE: 526299; NSE: MPHASIS)

www.mphasis.com

VA
S 

12
/1

2/
24

 U
S 

LE
TT

ER
 B

AS
IL

 9
28

0UK
Mphasis UK Limited
1 Ropemaker Street, London
EC2Y 9HT, United Kingdom
T : +44 020 7153 1327

INDIA
Mphasis Limited 
Bagmane World Technology Center 
Marathahalli Ring Road 
Doddanakundhi Village, Mahadevapura 
Bangalore 560 048, India
Tel.: +91 80 3352 5000

For more information, contact: marketinginfo.m@mphasis.com

Copyright © Mphasis Corporation. All rights reserved.

USA
Mphasis Corporation
41 Madison Avenue
35th Floor, New York
New York 10010, USA
Tel: +1 (212) 686 6655

7. Next Steps
The next steps in our exploration of quantum computing for high-dimensional Machine Learning involve several key 
avenues for further research and evaluation. First, combine QFS with Quantum Machine Learning (QML) techniques 
to assess and benchmark the performance improvements brought by this integration. Second, investigate robust 
and consistent measures for estimating mutual information between variables, potentially leveraging quantum 
methods for this estimation. Our preliminary tests suggest that managing the trade-off between relevancy and 
redundancy is crucial for optimizing performance. Third, evaluate the performance of the conditional mutual 
information-based optimization formulation proposed in this paper, which has not yet been evaluated. This 
comprehensive approach will provide a deeper understanding of the capabilities and limitations of QFS in various 
scenarios.
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