
A Framework for Code
Vulnerability Detection
Whitepaper by Abinaya Mahendiran, Assistant Manager, NEXT Labs

Contents

1. Abstract 1

2. Introduction 1

3. System Architecture 1

4. Data 2

 A. NIST – Juliet Test Suite 2

 B. Github 2

5. Data Preparation 2

6. Feature Extraction 3

 A. Source-based features 3

 B. Build-based features 3

 C. Test case-based features 3

7. Feature Engineering 4

8. Models 4

 A. Source-based models 5

 B. Build-based models 5

9. Conclusion 5

10. References 6

1.
Abstract
Software vulnerabilities pose a serious security risk that can lead to denial of service attack,
information leaks, and exploitation of the overall system. Fixing the bugs found in the software is
done during the testing as well as the maintenance phases of the software development life cycle.
In this paper, we explore how machine learning (ML) and deep learning techniques can be used
to assist developers in detecting bugs faster. Common security vulnerabilities are reported almost
every day and are maintained in the Common Vulnerabilities and Exposures (CVE) database. ML and
deep learning techniques can be deployed on the open source code base and the CVE database to
develop a standard framework for detecting code vulnerabilities. Deep learning architectures can be
used for feature representation while ML algorithms can be used for classification of good code from
bad code.

2.
Introduction
Thousands of security vulnerabilities are discovered every day by researchers and maintained in
the Common Vulnerabilities and Exposures (CVE)[3] database. Patches for such vulnerabilities are
released by the developer community for both open source and proprietary codes. Fixing such
security flaws is essential to avoid exploitation of software systems. Usually, static and dynamic
analyzers are used by the developers to detect bugs or vulnerabilities in the software. However,
just these methods are inadequate to detect all the security vulnerabilities. ML and deep learning
techniques can be coupled with traditional static and dynamic analyzers to detect vulnerabilities in
the code. In this paper, we explore how deep learning and ML can be leveraged to automatically
detect software vulnerabilities[1].

3.
System Architecture
The following diagram (Fig. 1) gives the overall system architecture of the code vulnerability
detection framework. The source code is taken as input to the system. The feature extraction
module extracts relevant features while the feature engineering module adds additional features
through deep learning models, and language-specific grammars and compilers.

Deep learning models such as RNN (Recurrent Neural Networks), CNN (Convolutional Neural
Networks) and GAN (Generative Adversarial Networks) are trained, and the source code is classified
as either good code (code without vulnerability) and bad code (code with vulnerability).

| 1

2 |

The following sections describe in detail the different modules and steps involved in the framework.

Feature Extraction Feature Engineering Model

Good Code/
Bad Code

• Source based
• Build based
• Test case based
 (Static/Dynamic
 Analysis)

void init_list(int val) {
 int list [10];
 for (int k = 0; k < 10; k++) {
 list[k] = relate(val, k);
 }//end for
}//end init_list ()

int relate(int a, int b) {
 if (diff(a, b) >= 0) {
 return 1;
 } else {
 return 0;
 }//end if/else
}//end relate()

int diff(int x, int y) {
 return x = y;
}//end diff()

• Code2Vec/CFG
• AST/Use-def matrix
• Pass/Fail

• GAN
• CNN
• RNN/LSTM
• Tree based
 classifiers

4.
Data
A. NIST – Juliet Test Suite
National Institute of Standards and Technology provides Software Assurance Reference Dataset
(SARD) dataset that contains known security flaws[6]. The research and the developer community can
use this to enhance the quality of the software assurance tools and frameworks that they develop.
Juliet Test Suite contains known security vulnerabilities and test cases for programming languages
such as C/C++, Java, c#, PHP and web applications. This source code, with or without the security
vulnerabilities, can be used as a training and testing set for the framework that we are exploring in
this paper.

B. Github
The open source repository like Github[5] can be mined for source code in different technologies
such as C/C+, Java, Python and several others. It can be used for training and testing the framework
under development.

5.
Data Preparation
For training purposes, the source code from the above-mentioned sources is broken down into
functions. Several methods can be combined to label the functions as either good (without any
vulnerability) or bad (with vulnerability). A static analysis and dynamic analysis tool can be used
to test the source code for any bugs during compile time and run time respectively. Tools such as
FlawFinder[4] can be used to check for vulnerabilities. For the open source code taken from Github,
NLP techniques can be used on the commit messages to understand if any bugs exist. As an
additional step, manual labelling can also be done to cross-check the consistency and accuracy in
labelling the functions. Labelled functions become the data to be consumed by deep learning and
ML models.

Fig. 1 - System Architecture

code snippet

x = z - 2;
y = 2 * z;
if (c) {
 x = x + 1;
 y = y + 1;
}
else {
 x = x - 1;
 y = y - 1;
}
z = x + y;

x = z - 2;
y = 2 * z;
if (c)

x = x + 1;
y = y + 1;

x = x - 1;
y = y - 1;

z = x + y;

B1

B2 B3

True False

CFG size = number of basic blocks = 4

CFG =

0 1 1 0
0 0 0 1
0 0 0 1
0 0 0 0

B4

B1

B2

B3

B4

basic blocks control �ow graph

6.
Feature Extraction
From the source code functions, the following features can be extracted that can be used by deep
learning and ML algorithms.

A. Source-based features
Features from the source code can be directly extracted using Natural Language Processing (NLP)
techniques. A custom lexer can be built to tokenize the given source code. Specific lexers have to
be built for different programming languages. The lexer can split the source code into tokens based
on language specific keywords, and a dictionary can be built from it. Bag of words vector can be
used to represent the tokenized source code.

B. Build-based features
Features can be extracted from the intermediate representation of the source code. Open source
compilers like Clang and LLVM (C/C++)[5] can be used to get the Control Flow Graph (CFG) of the
source code and the adjacency matrix. Language-specific tools can be used to obtain the CFG
for respective programming languages and used as features. Use-def matrix and opcode vector
obtained from the compilers can be used as features as well.

| 3

C. Test case-based features
Traditionally, test cases are used to test the given code for bugs. Test cases are run against the
source code and the status (pass/fail) is used as a feature for ML models.

Fig. 2 - Control Flow Graph

4 |

7.
Feature Engineering
Deep learning techniques can be used to learn better representation of the features. Word2Vec, an
unsupervised learning method is used to lean the word vector specific to a programming language.
Once the functions are lexed, the tokens can be passed to Word2Vec algorithms which will output
a vector of keywords that are contextually similar. For example, all the data type keywords will
be close to each other in the vector space (Fig. 2). This Word2Vec representation can be used to
explode the feature space representing the source code through the embedding layer in any deep
learning architecture.

8.
Models
Once the features are obtained from the methods given above, the labelled source code is converted
to sequences based on the lexer. The sequenced source code is then fed into the deep learning and
the ML algorithms to predict its vulnerability.

In the following sections, let’s look at the several types of models that can be used in this framework.

Fig. 3 - Word Vector for the C/C++ Source Code

dense layers

sequence
max pool

learned source
featuresembedding

lexer

source code

int * data =
new int[10];

convolutional
�lters

random forest
classi�er

labels

int
*
id
=

new
int
[
1
0
]
:

| 5

A. Source-based models
The ‘Bag-of-Words’ and the Word2Vec vectors can be fed as input to a TextCNN[2] (Figure 3)
model, which is developed basically for text classification. The CNN model will have an embedding
layer that has the learned Word2Vec representation. The embedding layer is followed by several
convolutional layers and a max pool layer which learns the succinct representation of the source
code. The dense layer at the top of the max pool layer learns the key features.

The TextCNN model is followed by a tree-based supervised classifier like Random Forest which will
classify the learned representation of the source code into one of the two classes, namely good
code (without vulnerabilities) or bad code (with vulnerabilities).

Fig. 4 - TextCNN Model

B. Build-based models
Another kind of model is the build-based one whose features are the CFG adjacency matrix, use-def
matrix and the opcode vector that are obtained using the compiler. All these features are converted
to vectors and then fed into a tree-based Random Forest classifier for classification.

9.
Conclusion
In this paper, we have outlined various deep learning and ML methods that can be used to detect
vulnerability in software. This, in turn, can help reduce the time taken for bug fixing and testing.
The methods mentioned have been tried by researchers and found to be efficient. The area of
vulnerability detection is an active area of research and we see gradual increase in the contribution
of solutions. The next logical step would be to fix the bugs by generating relevant patches for
developers to choose from.

| 11| 7www.mphasis.com

N
R

19
/0

3/
20

 U
S

LE
TT

ER
 B

AS
IL

60
42

UK
1 Ropemaker Street, London
EC2Y 9HT, United Kingdom
T : +44 020 7153 1327

INDIA
Bagmane World Technology Center
Marathahalli Ring Road
Doddanakundhi Village
Mahadevapura
Bangalore 560 048, India
Tel.: +91 80 3352 5000

Copyright © Mphasis Corporation. All rights reserved.

For more information, contact: marketinginfo.m@mphasis.com

USA
460 Park Avenue South
Suite #1101
New York, NY 10016, USA
Tel.: +1 212 686 6655

About Mphasis
Mphasis (BSE: 526299; NSE: MPHASIS) applies next-generation technology to help enterprises transform businesses globally. Customer centricity
is foundational to Mphasis and is reflected in the Mphasis’ Front2Back™ Transformation approach. Front2Back™ uses the exponential power
of cloud and cognitive to provide hyper-personalized (C = X2C2

TM = 1) digital experience to clients and their end customers. Mphasis’ Service
Transformation approach helps ‘shrink the core’ through the application of digital technologies across legacy environments within an enterprise,
enabling businesses to stay ahead in a changing world. Mphasis’ core reference architectures and tools, speed and innovation with domain
expertise and specialization are key to building strong relationships with marquee clients. To know more, please visit www.mphasis.com

10.
References
1. Jacob A. Harer, Louis Y. Kim, Rebecca L. Russell, Onur Ozdemir, Leonard R. Kosta, Akshay

Rangamani, Lei H. Hamilton, Gabriel I. Centeno, Jonathan R. Key, Paul M. Ellingwood, Erik
Antelman, Alan Mackay, Marc W. McConley, Jeffrey M. Opper, Peter Chin, Tomo Lazovich,
“Automated software vulnerability detection with machine learning,” arXiv:1803.04497,
2 Aug 2018.

2. KIM, Y. Convolutional neural networks for sentence classification.
CoRR abs/1408.5882 (2014).

3. MITRE. Common vulnerabilities and exposures. cve.mitre.org.

4. FlawFinder. https://dwheeler.com/flawfinder/.

5. CLANG. Clang static analyzer. https://clang-analyzer.llvm.org/.

6. Github. Github. https://github.com/.

7. NIST. Juliet test suite v1.3, 2017. https://samate.nist.gov/SRD/testsuite.php.

Author
Abinaya Mahendiran
Assistant Manager at Mphasis NEXT Labs

Abinaya Mahendiran is an Assistant Manager at Mphasis NEXT Labs. She holds a Master’s
degree in Computer Science with a specialization in Machine Learning and Deep Learning
from International Institute of Information Technology Bangalore (IIIT-B). Her research areas
include Natural Language Understanding/Processing, Machine Learning, Deep Learning
and MLOps. She has an extensive software engineering and data science experience.
At NEXT Labs, she has been building and productionizing NLU/NLP solutions for various
clients both on premise and on cloud.

www.mphasis.com

