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1. 

Introduction
Machine Learning & IT Operations (MLOps) – a combination of Machine Learning (ML) and IT 
Operations – focuses on automating and productizing machine learning algorithms through 
enhanced automation, collaboration and communication between data scientists and information 
technology professionals. It improves the efficiency and streamlines the management of model 
selection, reproducibility, versioning, auditability, AI explainability, packaging, re-usability, 
validation, deployment and monitoring, which helps in building ML models faster and at scale. 

There have always been challenges in moving applications from development to operations, 
which over the years, the software engineers have learnt to tackle through advances in DevOps 
and adoption of collaboration tools, versioning, testing, automation and new development 
practices. However, this is not the case with large scale ML projects that involve continuous 
model build, train, deployment and retrain. Therefore, automated, repeatable and scalable best 
practices are needed to manage them.

Currently, the ML tools are focused mostly on the management, versioning auditability  
governance and control of code. Some of the key challenges in the adoptions of AI/ML  
solutions are as follows:

• Articulation of business case to implement the AI solution

• Non-availability of quality data and inability to handle changes in data

• Time taken for integration with the current model of business, process, delivery & infrastructure 

• Cost of solution viz. skills, infrastructure

• Confidence in the solutions with the limited generalization and black box model

• Legal, compliance and regulatory concerns

As a response to these challenges, the best practices as well as tools and platforms have been 

standardized under the banner of MLOps. The value of MLOps in the ML project life cycle can be 

summarized as below:

1. Collaboration among the data science, software development and operations/delivery teams

2. Control over data, code, algorithms and models with versioning, tracking and auditability

3. Checks on the quality of solutions facilitated by easy debugging and interpretability of models  

 and model performance (drift detection)

4. Continuous integration and deployment of models in the software development, and delivery  

 environments leveraging automated pipelines and feedback loops

In this paper, we highlight the need of new practices across the ML life cycle ranging from data 

tagging to the deployment of ML models in production. We discuss approaches, methodologies, 
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frameworks and tools needed to tackle the ever-increasing complexities. We also introduce 

PACE-ML, which is Mphasis MLOps Framework & Methodology for automated continuous  

end-to-end machine learning. 

2. 

Key Tenets of Machine Learning Projects 
Skills: The teams should consist of data scientists, data architects, data engineers and business 
analysts who focus on data analysis, model development, experimentation and visualization. 

Model Training & Development: ML development is experimental and different from traditional 
programming. The teams work on model features, algorithms and configurations iteratively, as 
model auditing, data & model versioning and reproducibility are critical. Automated model training 
is a key need as the teams should be able to create a training pipeline that runs across several 
machines and can be reused by others. 

Collaboration: Developing a successful ML system requires collaboration across multiple  
groups in an iterative manner. Developers should be able to leverage past knowledge and  
results of experiments across versions, ensure peer-to-peer sharing and branch out new  
variants of experiments. 

Testing: Testing an ML system involves validating input data, model quality and performance, 
explainability, infrastructure, pipeline integration, API and data drift. Model reuse is different from 
software reuse, as models must be tuned based on input data/scenario.

Deployment: ML systems may need a multi-step pipeline to automatically retrain and deploy 
models. Therefore, the teams should be able to create deployment pipelines that runs across 
several machines and can be reused by others. It should support model portability across a 
variety of platforms, and be able to monitor and know when to retrain given scenarios such as 
data drift.

Production: The performance of ML models can be affected not only due to suboptimal coding, 
but also due to constantly evolving data profiles. In other words, models can decay in more ways 
than conventional software systems and this degradation must be considered. Therefore, the 
teams need to track summary statistics of the given data and monitor the online performance of 
the model to send notifications or roll back when values deviate from what’s expected.

3. 

PACE-ML - An Integrated Approach to  
Machine Learning Using MLOps   
PACE-ML (Pipeline for Automated Continuous End-to-End – Machine Learning) is Mphasis’ 
framework for machine learning development and deployment, built on MLOps principles to 
facilitate a set of practices and activities which enable data scientists and IT operations to 
collaborate. A combination of our proprietary tools and methodologies along with best-in-class 
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Key Features

Below are some of the key features of PACE-ML which powers successful ML projects:

Data Preparation, Feature Engineering and Version Control: This includes importing, 
validating and cleaning, munging and transformation, normalization, staging and feature 
engineering. Given the inconsistency across data sources and various time periods, input check 
for validity and automation of data input checks and notifications is important.  

Feature engineering, driven more by the business use context and less by data, is the process of 
transforming raw data gathered from clients into features that represent the underlying structure 
of problems to the ML models. Once data is gathered, PACE-ML follows a due-diligence process 
to ensure viability of the project and assess its risk. It utilizes the open source tool DVC to  
keep track of ML processes and file dependencies in the simple form of git-like commands.  
The data is stored in cloud locations (like S3) and changes are tracked in the system using data 
version control.
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PACE-ML Architecture

third-party as well as open-source tools, PACE-ML automates multiple stages in the pipeline, 
accelerating the life cycle of development, deployment and productionizing of ML algorithms. 
The framework uses workflows, collaboration platforms and tools to improve model selection, 
reproducibility, versioning, auditability, explainability, packaging, re-usability, validation, 
deployment and monitoring.

Feature Engineering



4  |

Collaboration among Stakeholders: Using collaborative workspaces (like Jupyter) for model 
development and workflows (like MLflow), PACE-ML ensures seamless collaboration among the 
stakeholders involved.

Feature Engineering

Model Explainability: One of the primary concerns with the use of AI models is their inherent 
complexity and black box nature. Apart from this, since the models are generated primarily 
by learning the existing data, the models have an inherent risk of incorporating the procedural 
biases of the creators of the data. Most of the times, these biases are unwarranted and difficult to 
identify. PACE-ML incorporates model explainability as its core feature, which is fully integrated 
with the model development and auditability pipelines. The explainability is provided at both the 
model level (features learned and their importance from the model perspective) and the prediction 
level (why the model is predicting the outcome for a specific case), which help the developers 
and users in identifying issues and/or biases. 

PACE-ML: ML Model Explainability

Collaboration among Stakeholders



Automated Build, Testing and Deployments: It is important to prepare disaster recovery 
plan before deploying machine learning models to ensure swift recovery in any unforeseen 
circumstance. The platform utilizes managed pipelines (e.g., AWS Sagemaker) for the deployment 
and creating the endpoints. Further, rapid one touch deployment is accelerated using custom 
scripts and Git Actions. These result in reduced number of touchpoints/handoffs to cut off cycle 
time and risks. The entire process from development to deployment of models is organized as 
pipelines which are then automated. 
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Model Monitoring: Using appropriate tools, PACE-ML provides monitoring for both the 
infrastructure and model performance at scale. The graphs related to the load, uptime, 
performance, security, as well as performance comparisons between challenger and deployed 
models are available through intuitive visualizations in the control tower.

PACE-ML: CI-CD using Git Actions

PACE-ML: Monitoring Workflow

PACE-ML: Dashboard for Monitoring of Models 
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PACE-ML: Drift Velocity Monitoring Dashboard

PACE-ML: Auditability of Past Models

Drift Monitoring: PACE-ML provides monitoring for data drift through version control of the data, 
looking for outliers/anomalies in the training data distribution over time. For model drift detection, 
we provide a continuous monitoring of the model performance by either continual tagging of 
random samples (e.g., manual tagging of fraud) in the model output or when system feedback is 
available (e.g., recommender systems) through continuous monitoring of the logs. 

Model Auditability: PACE-ML provides an option for maintaining versions of models and the 
training data used in that model. Further, the use of explainability in the pipeline ensures that we 
can also explain the reasons the decisions were taken at that point of time.

Key Benefits
PACE-ML offers multi-fold benefits to our clients and their AI/ML projects. Some of these pertain to – 

• Speed: Faster time-to-market for products and services

• Efficiency: Facilitates model development and deployment at reduced effort and time

• Explainability: Ensures governance, risk management and compliance through easy   

 debugging of models 

• Effectiveness: Helps users make accurate decisions
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• Trust: Increases users’ confidence in the system

• Automation: Reduces manual interventions and enables continuous delivery with automated  

 model pipeline management

• Collaboration: Tracks model, code and data changes, and increases collaboration  

 among teams

• Scrutability: Lets the users tell the system that it is wrong

• Debugging: Identifies biases and/or defects in the system so that they can be corrected

• Monitoring: Monitors and ensures no broken models in production, and ensures faster   

 response to performance issues

• Cost Optimization: Reduces cost of development through automation and  

 seamless integration

4. 
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