
Modernization

POV by Suresh Nair, Vice President & Principal Consultant

Contents

Introduction 1

Using an analogy to reframe the problem 1

What it takes to succeed 3

The 4Rs for success in modernization 6

Planning the migration 7

Mphasis tools and accelerators to help in modernization 9

In conclusion 10

‘We have an existing application, with logic we like, but

on a platform we don’t like. Can you get that logic onto

a ‘better’ platform? We refer the activities that attempt to

do this (i.e., moving program logic from one technology to

another) as modernization.

Statistics show that modernization projects have a very

poor success record. The migrated applications often end

up being ‘white elephants’, very expensive to maintain and

providing little business benefit over the applications they

replace. As a result, they are often perceived as wasteful

IT overhead.

This document talks about the main reasons these

projects fail, and what we can do to ensure they succeed

and benefit both business and IT.

Imagine a line drawing of a person’s face that has been

worked on for 20 years. Over the years, we have had the

time to correct all the errors, so the drawing is amazing

likeness. With time, the person has grown older, but the

drawing has been updated to add age lines and wrinkles

to keep the picture ‘current’.

Now, another artist has been asked to recreate the same

drawing, but in chalk instead of pencil. The artist wanted

to look at the subject, but he was asked to copy from the

old drawing that was created in 20 years.

A copy of a drawing is a copy of a drawing; it is not a

portrait of the subject. The technique for creating a chalk

drawing works very differently from the technique for

creating a pencil drawing. While we did get rid of many

of the mistakes, there are a few error lines still in there, as

well as smudge marks from the corrections.

If we look at the artist at work, we can see that their

technique is different. However, he has been asked to

throw away his years of experience, and instead mimic the

pencil style using the chalk.

1.
Introduction

2.
Using an analogy to reframe the problem

| 1

At this point, any artist worth their salt would throw their

chalk and walk away. However, if the starving artist does

continue gamely to the end, we can pretty much predict

that the resulting work will (a) not be a good likeness of

the subject (b) be a horrible chalk drawing and (c) be

impossible to keep ‘current’ like we did for the old

pencil drawing.

This is exactly what happens in most modernization

projects. The developers are not allowed to talk to the

business to understand the context or usage; they are

instead asked to migrate logic line by line. The migrated

applications are not suited for the target architecture and

are very hard to maintain.

 The mistakes are the same in both cases -
 1. The style or patterns do not fit the new medium: While the

logic works, it is not optimum for the target architecture. Well-
designed COBOL and Java applications have completely
different approaches to how data is modeled and managed,
which means the way the application uses the data is also
designed differently. In COBOL, shared data structures are
described in copy books, which are used through a data
flow. In Java, we break the data flow up into modules by
‘encapsulating’ data into objects. These are diametrically
opposing methods for modeling and sharing data. We can
mimic COBOL copy books on Java and migrate the COBOL
logic to use this, but the resulting application would be
considered a very poor Java application, which is not intuitive
for a Java resource to maintain.

 2. We are copying the past mistakes as well as the things
that worked well. It is really difficult to migrate and unwind
past mistakes at the same time. This means that there is no
significant improvement immediately after a legacy migration.
It takes a couple more iterations before the overall system
improves.

 3. In the example, chalk and pencil artists use very different
techniques. In the same way, the process of capturing
requirements and building technology solutions against those
requirements is very different for different technology platforms.
The migrated application is not ideally suited for the build style
of the target technology, resulting in a build process that is not
efficient. Due to this, the productivity drops
post migration.

In the same analogy, there is a way to get a great chalk drawing. An experienced artist will ignore
the directions given to him to mimic the line drawing. Instead, he will step back and use the
pencil drawing to build a mental image of the subject, filling in the gaps from experience. He will

2 |

The approach to ensuring modernization projects succeed is built on a few key changes in

thinking:

3.
What it takes to succeed

What
it takes

to Succeed

Business
Capabilities,
Not Applications

Layering
the Application

Migrate to
Reduce real
Technical Debt

Change
the Build Culture

It's OKAY to
Duplicate Data,

if we Always Know

3

2

4

5

1

Business Capabilities, Not Applications
Traditionally, we have focused on applications, migrating single or groups of applications at a
time. These applications provide a set of ‘business’ capabilities, which are used to record and
automate different aspects of the business. Usually, a single business process involves making
business capabilities from different applications work together.

We have found that focusing on business capabilities instead of applications helps us handle
the migration better. This is the technology equivalent of the chalk artist creating a picture of the
subject in their mind's eye. The visible business capabilities in the applications show us how the
technology is being used today. By focusing on these instead of the individual lines of code, we
have a much better understanding of what business needs. We can now figure out how to deliver
that capability in the new technology.

If we break these capabilities down the right way, we can often find off-the-shelf or existing logic
that can be reused or repurposed with much less effort than a full migration. This ‘right way’

usually means:

 a) Breaking down applications to organizational boundaries
 b) Encapsulating functionality that has the same ‘rate of change’

Let us take a practical example to understand this better.

create the image from scratch following their mental model, rather than the actual lines in the
pencil drawing. Now, with a quick glance at the subject, they can quickly pick up what they might
have missed and fill in the details.
This is very close to what we do to ensure that modernization projects succeed.

| 3

4 |

Imagine that we have a small company with a few departments. Departments can order things
they need through a procurement process. Different teams take care of the actual procurement
based on what is being ordered. All procurement activities involve finance. We need to ensure
that the departments are operating within their budgets, and that we pay the vendors on time.

If we think of buying chairs for the office vs requesting compute capacity on the cloud, it is going
to complicate the procurement request and fulfillment process. The office supplies department
and the IT infrastructure departments represent two logical organizational boundaries. We
therefore need to treat these as two different business capabilities. The financial reporting for
both of these actually is almost identical. Both procurement processes could invoke a single
business capability to make the general ledger entries against the procurement.

Layering the Application
When splitting out business capabilities, we often think of these as ‘vertical’ functional slices;
however, we also need to deconstruct the ecosystem ‘horizontally’ into layers. Our core systems
of the past often combine systems of records, process control, rules and user interfaces into
single systems. We recommend layering these into:

 1. Systems of record: System of record layer is responsible for
storing the current ‘state’ of critical resources which is important
for running the business. Think of where we would go to answer
these questions: Who are your employees? How many goods
do we have in stock? For a bank, how much do we owe the
customers who have deposits with us? How many loans do we
have?

 2. Systems of interaction: System of interaction provides the
capabilities that users (or other systems) see; it is used to
initiate changes and track ongoing processes. Users could
capture details of something that happened (e.g. customer
moved to a new house), trigger a process (e.g. customer
deposits a check to their account) or perform a manual task
(e.g. authorize a non-standard transaction).

 3. Systems of intelligence: System of intelligence has the logic to
interpret the events from the system of interaction and manage
the processing of these events through to completion, updating
the systems of record as we reach milestones in the process.

By enforcing this ‘horizontal’ separation into layers, we significantly simplify the migration of any
individual layer. Past experience has taught us that many of the ‘mistakes’ in past systems are
often resolved by this separation of layers. It formalizes the interactions between systems in the
same way that is intuitive to business and system designers.

Migrate to Reduce Real Technical Debt
Problems with existing systems are often expressed as ‘technical debt’. Wikipedia defines
technical debt as ‘the implied cost of additional rework caused by choosing a simple solution
now instead of using a better approach that would take longer’. For instance, in the past, we
may have added functionality into a system where it did not fit because of the availability of
resources or political realities within the organization. However, we are biased in our interpretation
of technical debt. Very often, technologies that are not part of the current crop of buzz words are
automatically classified as representing technical debt. This is not necessarily true.

Let’s take an example of application hosted on a mainframe that is past end of life. If we keep
supporting the mainframe because it is cheaper than the alternative of moving off it, we are
accumulating technical debt.

However, if something is on a ‘current’ mainframe, well supported by a reputable vendor, do we
need to replace it?

Not really; it is not incurring technical debt. If the logic is written in a language where it becomes
hard to find resources, for instance assembler on mainframe, then that part of the logic could be
considered as accruing technical debt.

At a certain point in future, making changes to the logic is going to be an expense. So, while
assembler on a ‘modern’ mainframe may not represent technical debt today, it will eventually
become a significant cause of technical debt as the current development team ages out, and it
becomes harder to find resources to replace them.

In table 1, we provide samples of technical debt causes, and how we remedy them.

Symptom Fix

Simple, limited changes to process flows cannot be released
independently. Instead, they must always be coupled with
infrequent, large code releases.

Pull process logic out of core systems into a separate layer.

Infrastructure on which an application is running (hardware,
operating system, container) is nearing, at or past end of support
from the vendor.

Migrate the logic to platform with a longer lifespan.
Ensure that the organization internalizes the accelerated
obsolescence cycle for modern technologies.

The ‘shape’ of an application spans multiple departments,
requiring consensus for any changes. Especially a problem when
the co-owners have disproportionate control
on the roadmap.

Move towards a microservices architecture, with care being taken
to break at organizational boundaries. Separate out foundational
services from business logic.

Faults in non-functional areas: E.g. a shared computing resource
(memory, CPU, hard disk) maxes out occasionally, causing
system outages.

Break down processes to pull out tasks that do not need to be on
the execution path. Use modern stream technology to have these
happen close to real time; but on separate hardware.

Table 1: Some examples of technical debt

Change the Build Culture
Once the business capabilities are migrated to the new platform, a team would be required to
support the newer version. There is a ‘who’ and a ‘how’ question that needs to be answered here.
Let us start with ‘who’ first.

To build great technology solutions to difficult business problems, teams need at least two skill
sets: (1) an experience with the business and (2) experience with the technology. If we bring a
new team, we lose (a), if we use the existing team, we lose (b).

The second is ‘how’. Better alignment between business and IT is achieved through agile. Faster
turnaround of individual IT projects is achieved today through the use of ‘DevOps’. Increased
stability and overall team productivity are achieved through test-driven design, and the team
should follow the below practices.

What we have seen is that introducing these on the legacy platforms prior to the start of the
transformation project helps with both ‘who’ and ‘how’ parts of the transformation. Successful
transformation is dependent on some restructuring of the legacy platform. By introducing
DevOps, agile and test-driven design in the legacy platform, the existing team improves upon
their skills and achieves a productivity lift. They get acquainted with the transformation and see
it as an opportunity rather than a threat. This goes a long way towards making modernization
projects succeed.

| 5

6 |

It’s OKAY to Duplicate Data, if We Always Know We are Doing it
One of the major causes of delays in any kind of technology transformation is the refactoring
of data structures. It was a tenant of good design for nearly 30 years that data should not be
duplicated across systems. This means that all the teams that want access to a piece of data
have a say in how it is structured. Building consensus on these data changes kill the momentum
of most large projects.

With the increasing popularity of microservices, there is a push to think beyond the traditional
model. Microservices need to be independent, which means we cannot have data dependencies
across different functional units. Duplication of data is considered acceptable in this world,
provided we understand how and why data is duplicated.

The most popular analogy that can be used here is to think of the business components as pipes,
and databases only as reservoirs. We can ‘move’ data from one reservoir to another, and this is
how things work. E.g. ‘customers who want to open accounts’ is one reservoir, while ‘customers
with open accounts’ is another. The business components involved in account opening – identity
checks, credit checks, relationship and account type selection – are ‘pipes’ that come together to
move the case from one reservoir to the other.

Prior to a legacy migration, it is very beneficial to go through the effort of deconstructing the
application into microservices, with data sharing issues resolved. We convert shared data into
handoffs of data between systems. These APIs provide clarity on how data ‘owned’ by one
system is consumed by others. Within each of these microservices, we can now evolve data
structures independently, using the APIs to isolate other systems from internal changes.

Putting all of these changes together, we have a repeatable model for modernization.

As we discussed at the outset, modernization is one activity within a larger program where we

have decided to move existing logic from one technology to another. Typically, IT and business

should work together to create an inventory of the applications across the enterprise and identify

actions to be taken for each one. A common classification they arrive at, would be something like

this:

4.
The 4Rs for success in modernization

Retain
No change (high business
value/low technology risk)

Renew
Incremental change to capability or
technology (medium business value or
medium technology risk)

Replace
Significant change to capability and
technology (medium business value
and high technology risk)

Retire
Low business value or duplicated
functionality moved to a
retained/renewed platform

Modernization addresses the changes in the ‘renew’ and ‘replace’ buckets.

 For each of these, we recognize that there
are several things going on at once:

 1. We are addressing the needs of the business, which are

changing. Rather than just focusing on migrating existing logic,

we need to look at the desired end state.

 2. Deconstruction of the existing application into layers and

microservices prior to extensive re-platforming of logic

 3. Put in place the processes and skills to sustain the new

platform. This requires retraining of existing resources on the

new technologies and training new teams on the business.

 4. We need to create a DevOps ecosystem to automate

development tasks as much as possible and

support technology

 When we look at any application we are transforming, we find

that all these activities are happening in parallel.

Putting all of these changes together, we have a repeatable model for modernization.

As we discussed at the outset, modernization is one activity within a larger program where we

have decided to move existing logic from one technology to another. Typically, IT and business

should work together to create an inventory of the applications across the enterprise and identify

actions to be taken for each one. A common classification they arrive at, would be something like

this:

 While the exact steps and sequence is
very organization and context specific,
we see the following tasks in successful
migration plans:

 1. We take the inventory of applications to be migrated, and break

this further down into microservices

 2. We further split the application into layers (system of

engagement / system of record / system of intelligence) and

place the microservices into one of the layers. If required, split

up the microservices further.

5.
Planning the migration

| 7

8 |

 3. Finally, look at any shared data structures across microservices,

and break the links till only one microservice owns the data.

Create data flows to show the flow from service to service for

the business capabilities.

 4. We gap this list of microservices against the inventory outside

of the migrated application, flagging for eliminating all the

microservices that are (or will be) available elsewhere

 5. We now have an inventory of the microservices that will exist

in the end state; and a ‘from’ and ‘to’ map for each of the

business capabilities, showing how it will move from the legacy

platform to the end state microservice

 Initially, even before we start on the migration, some of these

microservices can be created ‘in situ’, by wrapping the legacy

code. Modern tools exist that make this much easier. We can

now do a technical debt assessment for each of the business

capabilities and decide which ones can be left on the technology

they are on, and which ones really need

to move.

 What we have seen arising from this
exercise is:

 1. A large percentage of the legacy application will not need to

be migrated, as capabilities are either dropped or moved to
existing capabilities in other modules

 2. ‘Dead’ code is identified and eliminated from the scope. Since
we are focusing on business capabilities, it becomes much
easier to see functionality that is not relevant for the current
business operations.

 3. We can see a way to delivering business benefits almost
immediately after starting the program. The breakup into
business capabilities and layers frees up the logjam between
functionalities and allows the processes and business
capabilities to evolve at different speeds. This leads to
increased business buy into the program.

 4. We are taking most of the existing IT community along with the
change, upgrading their skills and sustaining their importance
to the business. This helps withstand the run of the overall
program.

 5. We remove many of the root causes of slowdowns in migration
projects – arguments about data and process flows – avoiding
overruns on the overall project

 In parallel, the following would be happening
to the development teams:

 1. If not already practiced, introduce Agile. The changes required

to package existing capabilities into microservices would be

converted into epics and stories, which can be picked up in

scrum meetings along with BAU work.

 2. If not already practiced, introduce DevOps. Automate the

environment setup and build, increase the use of automated

continuous integration and certification, and mandate the use

of unit tests as gatekeepers to ensure developer accountability.

Synchronize legacy releases with modern platform releases, so

teams start adjusting to the new turnaround times for changes.

 3. If not already practiced, move towards test-driven design,

which encourages the creation of well-bounded capabilities,

without data dependencies. There should only be dependencies

between business microservices and infrastructure

microservices.

6.
Mphasis tools and accelerators to help
in modernization
at Mphasis, we have a complete suite of accelerators, pre-integrated third-party products and

best practices to implement all of the steps outlined in this document. Some of the tools are:

 Front2Back™

 Provides a set of tools to accelerate the ‘vertical’ separation of

applications into ‘system of engagement’, ‘system of record’ and

‘system of intelligence’. Implements out of the box approach for

most of the tools (machine learning, dynamic schema mapping,

conversational context tracking) that make modern applications

much better than legacy applications. It limits what is needed

from legacy microservices and provides a platform where logic

that is being pulled out from legacy platforms can be hosted

for the future.

| 9

 XRAE
 Provides a comprehensive suite of pre-integrated tools to increase

the productivity of developer communities.

It combines the continuous integration ecosystems with technical

debt measures, so we can continuously improve

the productivity of the team while iteratively reducing technical

debt within the application.

 Cloud Migration Frameworks
 Where the target for a migrated platform is a cloud environment,

we leverage a variety of cloud migration frameworks for platforms

like PCF, Azure, Google, Amazon, Force.com, etc.

 Automated Code Migration Services
 We partner with a number of automated code migration tools and

service providers for the automated conversion of code between

platforms. These are aligned to the approach outlined here, in that

we deliver cloud-ready microservices from legacy code.

 Next Gen Transaction Processing
 Modern high-performance transaction processing ecosystems use

‘immutable data’ and ‘functional programming’ instead of the more

traditional ‘distributed transaction management’ frameworks like

CICS or TIBCO, and record level locking.

7.
In conclusion
 Modernization projects have a reputation for being hard,

prone to overruns and having a low probability of success. By

understanding what it takes for the end state to be successful, we

can achieve consistent success. Using the tools mentioned in this

document, we can significantly reduce the time required to achieve

the desired business end state, eliminate the common causes of

project delays and increase the satisfaction of all stakeholders

in the process.

10 |

www.mphasis.com

VA
S

17
/0

5/
19

 U
S

LE
TT

ER
 S

IZ
E

BA
SI

L
52

80

UK
88 Wood Street London
EC2V 7RS, UK
Tel.: +44 20 8528 1000

INDIA
Bagmane World Technology Center
Marathahalli Ring Road
Doddanakundhi Village
Mahadevapura
Bangalore 560 048, India
Tel.: +91 80 3352 5000

Copyright © Mphasis Corporation. All rights reserved.

For more information, contact: marketinginfo@mphasis.com
USA
460 Park Avenue South
Suite #1101
New York, NY 10016, USA
Tel.: +1 212 686 6655

About Mphasis
Mphasis (BSE: 526299; NSE: MPHASIS) applies next-generation technology to help enterprises transform businesses globally.
Customer centricity is foundational to Mphasis and is reflected in the Mphasis’ Front2Back™ Transformation approach. Front2Back™
uses the exponential power of cloud and cognitive to provide hyper-personalized (C = X2C2

TM= 1) digital experience to clients and their
end customers. Mphasis’ Service Transformation approach helps ‘shrink the core’ through the application of digital technologies across
legacy environments within an enterprise, enabling businesses to stay ahead in a changing world. Mphasis’ core reference architectures
and tools, speed and innovation with domain expertise and specialization are key to building strong relationships with marquee clients.
To know more, please visit www.mphasis.com

www.mphasis.com

