
Events are facilitators of Decoupled Architecture
Whitepaper by Rajasi Balan, AVP – Enterprise Application & Integration

Contents

Abstract 	 1

Why Event-driven Microservices? 	 1

Design Guidelines for Event-driven Microservices 	 2

Command Query Responsibility Segregation (CQRS)	 6

Conclusion	 6

References	 7

1.
Abstract
Microservices architectural style helps in building highly scalable, loosely coupled (or highly
decoupled) applications. While there are numerous benefits of this architecture, there are few
challenges around inter-service communication and data integration. Services need a seamless
way of exchanging data in a (near) real-time manner. Data must always be present before it is
requested.

Event-Driven Microservices provide solutions for many of these problems. This white paper focuses
on common design patterns which are used in event-driven microservices for service and data
integration. The patterns are illustrated using an Order application, which uses Apache Kafka’s
inherent design for building a resilient, reliable messaging channel. It is assumed that the Order
application is comprised of multiple microservices with a defined bounded context.

2.
Why Event-Driven Microservices?
Event-driven microservices allow for (near)real-time data exchange. They enable seamless
communication between different application components. We can build highly scalable, decoupled
services using events as a basis of communication. Let us take a quick look at how events can be
used to solve the two major challenges stated above.

Inter-service Communication
Let us take an example of modernizing a traditional monolithic application. During this transformation
journey, parts of the application get transformed in microservices architecture in an incremental
manner. It is impossible to modernize the entire application using a big bang approach. In the
transition phase, new microservices will require to communicate with this monolithic application.
Using synchronous mode of communication will create tight coupling between application
components, thereby compromising the flexibility of the application.

In such situations, asynchronous communication pattern helps to build a loosely coupled
architecture. Publish/subscribe, fire and forget, notifications, publish/asynchronous response are
some of its common sub-patterns. Each of these sub-patterns use event-driven architecture as a
backbone for communication.

Data Integration
Modern-day solutions require a single source of truth to improve customer experience.
Combined with high-quality data, it is possible to leverage information more effectively and efficiently.
Event-driven architecture helps to build integration pipelines that can support high-volume data.
Using event streams and stream processing layer, it is possible to build scalable, reliable pipelines

that combine data from disparate systems to create a unified data view.

| 1

2 |2 |

3.
Design guidelines for Event-Driven Microservices
Let us look at some design patterns which are used to build distributed applications that are
scalable, decoupled, built on reliable and flexible event-based architecture.

Events as First-Class Citizens
Problem Statement
In a traditional application, the database acts as the system of record (SoR). In a microservices
architecture, each bounded context would have its own database, typically known as micro-
databases. Data is always exposed through services. This works fine when services require a small
subset of data, not very frequently.

Consider a situation wherein a common set of data is required by services all the time. In the
example of the Order tracking application, user profile data is required by order processing and
shipping service.

User
Service

Shipping
Service

Order
Service

Figure 1: Traditional inter-service communication

Figure 2: Data caching

Remote calls in such situations would prove very inefficient, adding a latency to process most of
the requests. The problem multiplies as the ecosystem grows big.

As an improvement, we modified the application so that each service caches relevant data from
other services in its own database. With this approach, application performance is optimized. But
now we have another problem – data consistency. How do we ensure that cached data is always
updated? Which caching policies to implement?

User
Service

Shipping
Service

Order
Service

Cache Cache

| 3

Solution
Using event-driven architecture, we can build a performance-optimized, scalable solution which
addresses the above problems. There are mainly two types of events – notification (notify change in
state of data) or state transfer (push data from one domain to the other).

In the above scenario, the application is enhanced to use events for state transfer in addition to
the caching mechanism. Since order processing and shipping service requires a subset of the user
profile, they save that information in their own database. Any change in user profile information will
trigger an event. Order processing and shipping service consume these events by subscribing to
the relevant topics and updating user information saved in their database.

Event Collaboration
Problem Statement
In most situations, events contain all the information that is required for processing. However, there
could be instances wherein these events must be enriched to create more meaningful events, what
we call as converting raw events to business events.

Solution
The golden rule to remember is that events must be enriched as close to the processing layer as
possible, so that every connected system can interpret events as per its own business functionality.

There are three main design patterns that can be applied for event enrichment.

1.	Pure stateless implementation using data lookup

In our Order tracking application, the Order Created event is raised when an order is placed.
It contains the customer id, order id, and other order details. A notification engine processes this
event to generate an SMS/email notification. It first checks for the payment status by querying
the Payment Service. Next, it calls customer service to look up the customer details like preferred
SMS number, email id, etc. These details are added to the notification email/SMS for a complete
reference.

As we can see, the event is completely stateless. It only contains the information that is captured
while placing the order. One aspect to consider in this approach is that the notification service
must be designed to be highly reliable. Appropriate design considerations must be given to edge
situations like if customer service is down / not reachable, notifications will be queued and retried
once the service is up.

Figure 3: Pure stateless processing

Payments
Service

Customer
Service

Notification
Service

Order
Service

Order PlacedOrder Placed

Place Order

KAFKA

get customer details

customer information

Send email

get payment details

payment details

Online Portal

2.	Stateless streams using buffering

Using the same example as above, Notification Service receives events for Order Created event.
In addition, it also receives a Payment Processed event. This is an additional event, which is
raised by the Payment microservice, when order payment is processed. Notification service is
designed to consume both these events and then act upon them as per the business rules.

However, it may happen that the order created event may reach after the payment processed
event. The notification service must buffer each event in its cache for some time to handle these
delays. Only when both events are received for an order, will it send a notification to the customer.
As in the above pattern, it still queries the customer service to get the required information.

This pattern has reduced the number of service calls as compared to the previous option, since
integration with Payment service is using events. However, there is increased complexity of
buffering and handling messages that may come in out of sequence.

Figure 4: Stream-based processing

Figure 5: Stateful implementation

3.	Stateful implementation

Extending the above option to use caching mechanism, it will now be possible to make
notification service a stateful service. Instead of querying customer service every time, it caches
the whole customer dataset in memory at startup. As we saw in the Events as First-class Citizens
pattern, we will use events to update the cache.

4 |

Customer
Service

Notification
Service

Order
Service

Payments
Stream

Order
StreamOrder Placed

Place Order

KAFKA

get customer details

customer information

Send email

Online Portal

Notification
Service

Order
Service

Payments
Stream

Cached Customer
Information

Order
StreamOrder Placed

Place Order

KAFKA Send email

Online Portal

The biggest advantage of this approach is that the event processor is not dependent on any other
service for processing a message. It also does this processing with reduced latency. However, the
application would require a longer startup time since it will have to re-build the state.

Which is the best option?

The choice of option depends on the application and its use cases. Stateless processing services
can be restarted faster in case of failure since there is no state to build up. Stateless processing
provides horizontal scalability in a cookie-cutter style. However stateless processing may
increase latency, depending on the use case complexity. In the above example, there will be a
service call every time a notification needs to be sent.

A stateful implementation may provide improvement in the performance, since the number of
API calls is reduced. But it requires additional processing logic. In certain use cases, a service
may consume multiple event streams and co-relate them with a correlation id. We also need to
consider some edge use cases like events coming out of sequence or missing events.

Event Sourcing
Problem Statement

In a typical monolithic application, the persistence layer or database is considered as the system
of truth and system of record. It always stores the latest state of any dataset. If there is a need to
save the transaction history, a special transaction history table is created.

Solution

Events can play a much bigger role than simply being used for asynchronous inter-service
communication. When a series of events are stored in the order they were created, immutably,
it can serve as an audit log. We can replay all the transactions that have happened in the system
on an object. The resultant state of an object can be deduced from this event replay. This is also
known as Event Sourcing.

If the Order processing application does not follow an event-driven architecture, we only have
the orders table giving us the latest state of the order. Any changes to the order state might get
logged in a separate transaction log, based on the application design.

Using events, you eliminate the need to maintain a separate log. The order status is derived from
event logs. The order table always contains the latest state. Historical data is fetched from events
and an order state can be created for any given time window.

| 5

2 |6 |

There are multiple options to implement event handlers. Apache Kafka Streams can be used to
process the events. It provides the benefits of real-time stream processing without an additional
cluster overhead.

The Application store could be any relational data store or can be implemented within the Kafka
Streams itself.

Information is enriched using custom data models on top of the event log like materialized and
polygot views. A materialized view is a very common construct used in databases for fetching query
results in a performance-optimized way. These views work on a pre-computed query, which fetches
results from the underlying database tables. Using the same analogy, we can use KSQL or KTable
over event topics to combine data for read services.

5.

Conclusion
Event-driven architectures have evolved from providing a simple publish-subscribe pattern to
becoming complex integration platforms. Using technologies like Apache Kafka it is possible to
create an architecture that facilitates building loosely coupled, highly agile application components.
There is a paradigm shift from “Asking for data” towards “Having data before being asked”.
That is the major design change which modern applications adhere to operate globally, break down
application silos, and create a seamless user experience. We can process workloads that are much
more than what a traditional architecture can handle.

View
Service

Application
Store

Order
Transaction

History

Custom
read

models

Order Validated

Order
Service

Order Placed

Place Order

KAFKA

Online Portal

Event Handler

Figure 6: CQRS and event sourcing

4.

Command Query Responsibility Segregation (CQRS)
CQRS is a very common design pattern that is applied over event sourcing to create scalable
architecture. In this pattern, we expose different service endpoints, using separate data models,
for a command (write data) and query (reading data) operation.

| 5| 11| 7www.mphasis.com

N
R

05
/0

1/
22

 U
S

LE
TT

ER
 B

AS
IL

71
83

UK
1 Ropemaker Street, London
EC2Y 9HT, United Kingdom
T : +44 020 7153 1327

INDIA
Bagmane World Technology Center
Marathahalli Ring Road
Doddanakundhi Village
Mahadevapura
Bangalore 560 048, India
Tel.: +91 80 3352 5000

Copyright © Mphasis Corporation. All rights reserved.

For more information, contact: marketinginfo.m@mphasis.com

USA
460 Park Avenue South
Suite #1101
New York, NY 10016, USA
Tel.: +1 212 686 6655

About Mphasis
Mphasis (BSE: 526299; NSE: MPHASIS) applies next-generation technology to help enterprises transform businesses globally. Customer centricity
is foundational to Mphasis and is reflected in the Mphasis’ Front2Back™ Transformation approach. Front2Back™ uses the exponential power
of cloud and cognitive to provide hyper-personalized (C = X2C2

TM = 1) digital experience to clients and their end customers. Mphasis’ Service
Transformation approach helps ‘shrink the core’ through the application of digital technologies across legacy environments within an enterprise,
enabling businesses to stay ahead in a changing world. Mphasis’ core reference architectures and tools, speed and innovation with domain
expertise and specialization are key to building strong relationships with marquee clients. To know more, please visit www.mphasis.com

6.

References
1.	 Inter-service Communication Patterns - https://www.enterpriseintegrationpatterns.com/patterns/

conversation/BasicIntro.html

2.	Understanding CQRS - https://www.confluent.io/blog/event-sourcing-cqrs-stream-processing-
apache-kafka-whats-connection/

3.	Event Collaboration - https://martinfowler.com/eaaDev/EventCollaboration.html

Author

Enterprise Architect with 20+ years of experience in architecture & Implementation
of Enterprise Integration Platform for large scale applications.

Rajasi Balan
AVP – Enterprise Application & Integration

www.mphasis.com
https://www.enterpriseintegrationpatterns.com/patterns/conversation/BasicIntro.html
https://www.enterpriseintegrationpatterns.com/patterns/conversation/BasicIntro.html
https://www.confluent.io/blog/event-sourcing-cqrs-stream-processing-apache-kafka-whats-connection/
https://www.confluent.io/blog/event-sourcing-cqrs-stream-processing-apache-kafka-whats-connection/
https://martinfowler.com/eaaDev/EventCollaboration.html

