
1Machine learning model on AWS Lambda	 Mphasis

Deploying Machine Learning
Model on AWS Lambda A Whitepaper by

Eshwar R

Associate Software Engineer, Mphasis NEXTlabs

Ramaraj Periasamy
Cloud Architect, Mphasis NEXTlabs

Sachin Kannan
Associate Software Engineer, Mphasis NEXTlabs

2Machine learning model on AWS Lambda	 Mphasis

Contents

1	 Introduction .. 3

	 1.1	 Overview .. 3

	 1.2	 About this team ... 3

	 1.3	 Approach ... 3

2	 Deployment Architecture for Machine Learning Model in AWS ... 3

	 2.1	 Implementation of machine learning model as a Lambda function 4

	 2.2	 Specific considerations ... 5

3	 Hardware/Software Requirements ... 5

	 3.1	 Hardware requirements ... 5

	 3.2	 Software requirements .. 5

	 3.3	 Machine learning model requirements .. 6

	 3.4	 AWS resource requirements .. 6

4	 Configuration and Deployment ... 7

	 4.1	 S3 bucket settings ... 7

	 4.2	 AWS Lambda configuration ... 8

	 4.3	 Building deployment package.. 10

5	 Execution of Lambda Function.. 10

	 5.1	 Downloading input CSV from S3 input bucket .. 10

	 5.2	 Processing the input data using machine learning model .. 10

	 5.3	 Pushing the generated output CSV to S3 ... 11

	 5.4 CloudWatch logs and metrics ... 11

6	 Challenges Faced .. 12

7	 References... 12

8	 Disclaimer .. 12

9	 Trademarks .. 12

3Machine learning model on AWS Lambda	 Mphasis

1.1 Overview
We live in a digital world, surrounded by huge amount of data, and that’s why it is called the data age. The data
available to us today has the DNA of the details of our day-to-day activities. Information technology is currently
focussed on mining this data from various data sources to gain meaningful insights.

One of the most significant industry trends to gain insight into the vast amount of data is to leverage
Artificial Intelligence (AI). AI uses machine learning and deep learning algorithms to analyse the data to make
real-time decisions and to trigger subsequent actions.

The AI-based machine learning and deep learning models can broadly be deployed in the following ways:

a) Server-based architecture (which is in practice since long time)

b) Serverless architecture

c) Microservices architecture

Cloud environment provides the required services to deploy the AI algorithms in serverless and in microservices
architecture. This document highlights the design and implementation steps for deploying a machine learning model
in AWS cloud environment as an AWS Lambda (serverless) function. It also provides the library and package details
required to create, deploy and execute the AI model as Lambda function.

1.2 About this team
This document is the result of work done by the engineering team of NEXTlabs on serverless computing in cloud
environment. NEXTlabs is an R&D unit of Mphasis, which focusses on developing in-house AI-based (machine learning
and deep learning algorithms) solutions to solve complex customer problems.

1.3 Approach
Serverless computing, a service offered by almost all cloud providers, does not need users to manage the underlying
resources that run your applications. Hence, the users are free from the tasks involving provisioning, scaling, and
managing servers. This helps them channel their time and energy into the development of products that ensure
scalability and reliability.

AWS Cloud offers AWS Lambda as their serverless computing platform. Software developers write actionable
functions to realize the business logic and run the function as Lambda function. The users can then configure
events to trigger it. In this manner, AWS Lambda makes it possible to run event-driven applications in a “serverless”
computing model.

Deployment architecture for machine learning model includes components to:

•	 Store the input data

•	 Execute the Lambda function

•	 Store the packaged model file and the Lambda function code

Kinesis streams, DynamoDB and S3 buckets can be the source of inputs. In our case, the input file, which is a .CSV
file, is uploaded into a S3 bucket and it triggers an Amazon S3 event. AWS Lambda executes the Lambda functions
in response to the event triggered. The Lambda function then uploads the output to another S3 bucket.

1. Introduction

2. Deployment Architecture for Machine Learning Model in AWS

4Machine learning model on AWS Lambda	 Mphasis

Users can download the output file from S3 bucket and use a visualizing tool to analyze the output. Amazon
QuickSight is one such tool from AWS, but the user is free to choose his own tool based on his requirements. Amazon
CloudWatch monitors the resource usage and provides the metrics based on the logs uploaded by the Lambda
functions at runtime. IAM roles control the access for the services used in the architecture.

Below is the detailed architecture of the serverless deployment on AWS.

User uploads input file onto the S3 bucket1

Lambda function is loaded and executed3

S3 event is triggered on input file upload2

Output file is uploaded onto S3 bucket3

Lambda function

Output
Input

Model file

Availability Zone

AWS Region

Business systems

Users systems
IAM

Role

Cloud watch

3
4

21

AWS

VPC

2.1 Implementation of machine learning model as a Lambda function
Lambda functions are implemented in the following two ways:

1.	 Implementation without advanced packages

2.	 Implementation with advanced packages

2.1.1 Implementation without advanced packages
You can use AWS Console to implement Lambda functions when the source code of the function does not require any
special packages other than AWS SDK. Please note that Lambda functions come pre-installed with AWS SDK files.
You can use the online editor in AWS console to develop the source code for the Lambda function. This method is
useful to deploy small workloads as Lambda functions, which do not require complex packages.

2.1.2 Implementation with advanced packages
Lambda does not support adding packages through AWS Console editor. Therefore, when the source code of the
Lambda functions requires additional packages, such as a graphics library for image processing, you cannot use
AWS Console editor. In that case, you will need to create Lambda function deployment package separately. This
method has to be used even when Lambda needs to be created programmatically using AWS CLI. You can deploy
the package into Lambda function using AWS console or upload the package into an S3 bucket, and configure the
Lambda function to execute it.

The deployment package has been created separately for this research work as the model used (sentiment analysis)
requires complex packages. The package file was then created as zip and uploaded to an S3 bucket. The Lambda
function was configured to execute it.

Note: We recommend that users follow this method as it gives complete programmatic access.

5Machine learning model on AWS Lambda	 Mphasis

2.2 Specific Considerations
AWS Lambda has the following limitations. It will be good to keep this in mind while designing server architecture
using AWS Lambda.

•	 “hard” limitations for the runtime environment.

	 ♦	 The disk space is limited to 512 MB

	 ♦	 Memory can vary from 128 to 1536 MB

	 ♦	 Maximum execution timeout for a function is 5 minutes

	 ♦	 The default package size is 50 MB

•	 Limitations on the requests served by Lambda

	 ♦	 Request and response body payload size is maximized to 6 MB

	 ♦	 Event request body can be up to 128 KB

You can approach AWS support centre to increase these limits. Refer to the below AWS URL for more details on AWS
Lambda limits.
https://docs.aws.amazon.com/lambda/latest/dg/limits.html

3.1 Hardware requirements
3.1.1 Machines
AWS does not allow console access for the instances on which Lambda functions run. Only the size of the memory
needed to run the Lambda functions need to be specified. Memory can be configured between 128 MB to 3008 MB.

3.2 Software requirements
3.2.1 Product version
The following software packages are required to run Lambda functions in Python environment.
These Python packages are specific to Amazon Linux.

√	 _pycache_

√	 certifi-2018.1.18.dist-info

√	 chardet-3.0.4.dist-info

√	 colorama-0.3.9.dist-info

√	 Dateutil

√	 docutils-0.14.dist-info

√	 idna-2.6.dist-info

√	 jmespath-0.9.3.dist-info

√	 numpy-1.13.3.dist-info

√	 pandas-0.20.3.dist-info

√	 pkg-resources

√	 pyasn1-0.4.2.dist-info

√	 pytz-2017.2.dist-info

√	 PyYAML-3.12-py3.6.egg-info

√	 requests-2.18.4.dist-info

√	 rsa-3.4.2.dist-info

√	 setuptools-38.4.0.dist-info

√	 six-1.11.0.dist-info

√	 vaderSentiment-2.5.dist-info

3. Hardware/Software Requirements

6Machine learning model on AWS Lambda	 Mphasis

3.3 Machine learning model requirements
This section articulates the important steps that one needs to follow while choosing algorithms to create
and train machine learning models.

•	 Choose the appropriate algorithm to create the model. Identify required training data for the model.

•	 Consider the following factors while deciding on infrastructure requirements to train machine learning models

	 ♦	 Algorithm complexity and parallelism requirements to decide CPU requirements

	 ♦	 Data size (length of the array and data type) to decide the memory requirements

•	 �Make sure the input data format matches with the attributes that model trains on. The input data can
be a JSON/text/xml file as well as streaming data.

•	 �The input data must be pre-processed before the models consume it, to see if there are any missing values
and data mismatch present in the input. Design of pre-processing stage should be as per the input data format.

•	 �Machine learning models consume data in data frames, which are the standard data structures used in machine
learning models. The input data should be provided in CSV format, as it is structurally similar to the data
frame structure.

•	 Stop training the model when it provides the required accuracy consistently over a period.

•	 �Retrain the algorithm if the testing accuracy deviates drastically from the training accuracy (bias-variance trade-off).
In such cases, relook at the input data as well.

The model used in the research work for this document is on sentiment analysis, which takes CSV file as input
and provides formatted CSV file as output. The model file is in Python language.

3.4 AWS resource requirements
The following resources are to be created in AWS environments to deploy and execute the machine
learning model.

•	 �Input bucket – Create an S3 bucket that holds the raw input CSV files. Uploading a file onto this bucket will trigger
the Lambda function.

•	 Output bucket – Create an S3 bucket to store the data processed by the Lambda function.

•	 �Lambda function - Write an AWS Lambda function that loads the model file and calculates the sentiment scores.
(As mentioned earlier, the model deployment package is kept in an S3 bucket and the path is configured in Lambda
function. The example path can be S3://[CodeBucket]/[CodeKeyPrefix]/data-processor.zip).

•	 �Lambda execution role – Create an AWS Identity and Access Management (IAM) role to execute the
Lambda function. This role will give the Lambda function the required access to S3 buckets and for writing
logs to CloudWatch.

•	 �S3 Access policy - Create an IAM policy to be associated with Lambda Execution Role. This policy will provide
read and write access to S3 buckets.

•	 �S3 event creation – Create a trigger configuration to invoke Lambda function when input file is uploaded
onto a specific S3 bucket.

7Machine learning model on AWS Lambda	 Mphasis

Following configurations need to be done on the AWS resources used in deployment:

•	 Configure S3 buckets to allow read and write operations from Lambda function

•	 Configure the Lambda function to access the S3 buckets for reading the input data and writing the output data

•	 Configure the Lambda function to retrieve the function to be executed from S3 bucket

•	 Configure the Lambda function to write execution logs to CloudWatch to generate CloudWatch metrics

The following sections detail the activities that need to be carried out to complete the configuration.

4.1 S3 bucket settings
S3 buckets store the Lambda function, which executes at runtime, the input data and the output data. We need to
apply the policies (as detailed below) on these buckets for the read, write and execution operations, to ensure the
buckets are accessible from the Lambda function.

S3 policy for the bucket to store Lambda function – As mentioned in section 2.1, the Lambda function deployment
package is uploaded onto S3 bucket. When the deployment package is uploaded, the Lambda function
is triggered, which then retrieves the package from the S3 bucket. This policy allows access only to the content
of the bucket that has the Lambda assigned roles. Granting public access is not recommended.

Given below is the demonstration of creating and assigning an S3 policy using AWS CLI.

To create an S3 policy

aws iam create-policy --policy-name <policy name> --policy-document file://<input to the policy>

To assign the policy to an S3 bucket

aws s3api put-bucket-policy --bucket <bucket name> --policy file://<policy name>

Sample policy statement
{

 "Statement": [

 {

 "Effect": "Allow",

 "Principal": {

 "AWS": "arn:aws:iam::123456789012:root"

 },

 "Action": [

 "s3:DeleteObject",

 "s3:PutObject",

	 "s3:GetObject"	

],

 "Resource": "arn:aws:s3:::MyBucket/*"

 }

]

}

4. Configuration and Deployment

8Machine learning model on AWS Lambda	 Mphasis

S3 policy for the bucket to store input data
User uploads the input file to the bucket, which is then processed by the Lambda function. Steps to create
and assign the policy remain the same as above.

S3 policy for the bucket to store input data
Lambda function uploads the output file once the input file is processed completely. It is recommended
to give this bucket public read access unless you can specify specific IP ranges as the source of request.

Please find the sample policy that we used in our output S3 bucket.

4.2 AWS Lambda configuration
•	 �Choose a runtime environment for the AWS Lambda function to execute. AWS Lambda supports

the following runtime environments.
	 ♦	 Python – Versions 2.7 and 3.6

	 ♦	 Node.js – Versions 4.8, 6.10 and 8.10

	 ♦	 Java 8

	 ♦	 Go 1.x

	 ♦	 C# - .NET core 1.0 and .NET core 2.0

•	 �Configure basic settings like max execution time, function handler and specify the URL of the deployment
package. For the research work, we have chosen the runtime environment as Python 3.6 and defined
the Lambda function handler as below. The function handler will bootstrap the function once the file
upload event triggers.

{

 "Version":"2012-10-17",

 "Statement":[

 {

 "Sid":"AddPerm",

 "Effect":"Allow",

 "Principal": "*",

 "Action":["s3:PutObject"],

 "Resource":["arn:aws:s3:::examplebucket/*"]

 }

]

}

9Machine learning model on AWS Lambda	 Mphasis

•	 �Configure trigger events to use S3 as a trigger and specify the trigger type (for example, PUT action) along
with any prefix, to define the folder structure.

Applying this will result in Lambda automatically allocating the appropriate policies to access the configured
S3 resources.

•	 �Assign an execution role to Lambda function, which uses this role to upload the processed file to the output
S3 bucket and to write execution logs to CloudWatch. S3 bucket policy remains the same as defined in the
previous sections.

Here is an example of the policy that allows write to CloudWatch.

{

 "Version": "2012-10-17",

 "Statement":[{

 "Effect":"Allow",

 "Action":["cloudwatch:GetMetricStatistics","cloudwatch:ListMetrics"],

 "Resource":"*",

 "Condition":{

 "Bool":{

 "aws:SecureTransport":"true"

 }

 }

 }

]

}

10Machine learning model on AWS Lambda	 Mphasis

4.3 Building deployment package
Building the deployment package involves carrying out the following steps:

•	 Create a deployment package folder as per your choice.

•	 �Identify dependent libraries and packages to execute the machine learning model created in Python.
In our case, we used libraries and packages compatible with Amazon Linux since the Lambda functions are
run on AWS Linux.

•	 Install all the packages in a deployment folder inside the root directory.
		 pip install module-name -t /path/to/project-dir
	 Note: Section 3.2 - Software discusses the package requirements in detail.

•	 Include the source code of the Lambda function in the deployment package folder and zip.

•	 �Upload the zipped folder onto an Amazon S3 bucket and save the URL of the bucket.
Please note that the URL should be specified in the Lambda configuration.

When the user uploads the input file onto the S3 bucket, the Lambda event is triggered automatically. On
receiving the trigger, AWS lambda searches for the configured handler function. Lambda function gets
executed in the following three logical phases.

5.1 Downloading input CSV from S3 input bucket
In this phase, the Lambda downloads the input file and uploads the file onto the “tmp” folder of Lambda.
The below script which is part of the Lambda function performs this activity. In our case, we have used Python
SDK’s (boto library) download file method to download the files from S3. Please note that this gives us access
only to the “tmp” folder of Lamda instance.

5.2 Processing the input data using machine learning model
This part of the function is responsible for the input data analysis. Based on model file used in the Lambda
function, the input data is analysed and the output fields are written to a CSV file.

In our case, we have used the model based on sentimental analysis inside the Lambda function.

5. Execution of Lambda Function

import boto3

import botocore

BUCKET_NAME = 'input-bucket' # replace with your bucket name

KEY = 'input_CSV_in_s3.csv' # replace with your object key

s3 = boto3.resource('s3')

try:

 s3.Bucket(BUCKET_NAME).download_file(KEY, 'my_input_CSV.csv')

except botocore.exceptions.ClientError as e:

 if e.response['Error']['Code'] == "404":

 print("The object does not exist.")

 else:

 raise

11Machine learning model on AWS Lambda	 Mphasis

5.3 Pushing the generated output CSV to S3
The output CSV generated by the Lambda function is uploaded to an amazon S3 bucket. Any visualization
tool such as Amazon QuickSight, to gain deep insights into the data can consume this output data.
Users can take appropriate follow-up actions based on the analysis.

Below is the code snippet to upload output data to an S3 bucket.

5.4 CloudWatch logs and metrics
As part of the Lambda function execution, it writes the execution details to CloudWatch.
Given below is sample log entry and metrics.

Logs

Metrics

import boto3

s3 = boto3.resource('s3')

s3.meta.client.upload_file('/tmp/output_file','mybucket','output.csv')

12Machine learning model on AWS Lambda	 Mphasis

Below challenge was faced during the implementation of the deployment architecture
for writing this document.

•	 Finding the lambda machine specific packages and libraries

	 	♦	� AWS Lambda service internally runs on amazon Linux AMI. It took a lot of time to identify
the required packages

6. Challenges Faced

We referred to the following links for our work on this paper.

•	 https://aws.amazon.com/lambda/
•	 https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html
•	 https://aws.amazon.com/sdk-for-python/

7. References

Information in this document is provided ‘AS IS’ without warranty of any kind. Mention or reference to
non-Mphasis products are for informational purposes only and does not constitute an endorsement of such
products by Mphasis. Performance is based on measurements and projections using standard Mphasis
benchmarks in a controlled environment. The actual throughput or performance that any user will experience
will vary depending upon considerations such as the amount of multiprogramming in the user’s job stream,
the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can
be given that an individual user will achieve throughput or performance improvements equivalent to the
ratios stated here.

8. Disclaimer

The following terms are trademarks of Mphasis and other companies in the United States,
other countries, or both:

•	 AWS® is trademark of Amazon Web Services

•	 Python is a software distributed under Python Software Foundation License

•	 �Amazon Linux is a version of Linux operating system developed by Amazon Web Services to host
in Amazon EC2 instances

•	 �Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in the United States,
other countries, or both

9. Trademarks

13Machine learning model on AWS Lambda	 Mphasis

VA
S

 0
6/

06
/1

8
U

S
 L

E
TT

E
R

 B
A

S
IL

 4
71

0

For more information, contact: marketinginfo@mphasis.com
USA
460 Park Avenue South
Suite #1101
New York, NY 10016, USA
Tel.: +1 212 686 6655

Copyright © Mphasis Corporation. All rights reserved.

UK
88 Wood Street
London EC2V 7RS, UK
Tel.: +44 20 8528 1000

INDIA
Bagmane World Technology Center
Marathahalli Ring Road
Doddanakundhi Village, Mahadevapura
Bangalore 560 048, India
Tel.: +91 80 3352 5000

www.mphasis.com

Eshwar R

Eshwar works as an Associate Software Engineer at Mphasis NEXTlabs. He
completed his B.Tech from M S Ramaiah Institute of Technology, Bengaluru.
His interests lie in the field of Cloud Computing and Artificial Intelligence. He
likes to learn latest technologies and experiment them for various use cases.

Ramaraj Periasamy

Ramaraj is a Cloud Architect with Mphasis NEXTlabs. His focus area is design
and development of AI-based cognitive solutions on Cloud. He leads design
and development of migration artifacts that help accelerate customer Cloud
journey. He also supports other Cloud IP initiatives within NEXTlabs. Prior to
Mphasis, he has worked in various companies like IBM, Infosys and Wipro
as Cloud Architect. He completed his Master of Engineering from Bharathiar
University and B.Tech from Madras Institute of Technology, Anna University.

Sachin Kannan

Sachin, an Associate Software Engineer at Mphasis, is part of NEXTlabs
HyperGraf™ team. He has implemented several modules of HyperGraf™ as
Lambda function and handles all AWS services related deployment activities
in NEXTlabs.

Author

About Mphasis
Mphasis (BSE: 526299; NSE: MPHASIS) applies next-generation technology to help enterprises transform businesses globally. Customer centricity is
foundational to Mphasis and is reflected in the Mphasis’ Front2Back™ Transformation approach. Front2Back™ uses the exponential power of cloud and
cognitive to provide hyper-personalized (C = X2C2

TM = 1) digital experience to clients and their end customers. Mphasis’ Service Transformation approach
helps ‘shrink the core’ through the application of digital technologies across legacy environments within an enterprise, enabling businesses to stay ahead
in a changing world. Mphasis’ core reference architectures and tools, speed and innovation with domain expertise and specialization are key to building
strong relationships with marquee clients. To know more, please visit www.mphasis.com

http://www.mphasis.com/
https://www.mphasis.com/home/our-approach.html
https://www.mphasis.com/home/our-approach.html
http://www.mphasis.com/

