
Mphasis Digital POV
Use Go for System Programming, Distributed
Systems and Cloud Workloads

PoV by

Aniruddha Chakrabarti
AVP Digital, Mphasis

2Use Go for System Programming, Distributed Systems and Cloud Workloads Mphasis

Abstract
C and C++ are widely accepted and used as de-facto standard for systemprogramming language.In spite of the
tremendous success and adoption of C and C++, there was always need for a more modern system programming language
that would not only have performance characteristics of C and
C++, but also the flexibility of other modern languages such
as Python, Pascal, Modula and Smalltalk.

In recent past (since 2000) we have seen three moderately
successful system programming languages being born
– D (in 2001), Go (in 2009) and Rust (in 2012). Among
them, while D is a close follower of C and C++, if not
predecessor and hence the name D, Go takes a unique and
differentiated approach than C and C++. We believe this is
the strongest reason behind Go’s success.

Go is also well suited for web development. There are multiple web development frameworks and middle tiers for Go
that have received success in recent times, including Martini, Gin, Negroni, Revel, Beego, Gorilla and Net/HTTP. Go is
also supported by multiple PaaS platforms including Google Cloud Platform (App Engine), Cloud Foundry (including
Pivotal Web Service) and Heroku. AWS Elastic Beanstalk also supports deploying Go applications. We strongly
believe that in future Go would come out as a strong alternate of C and C++ in the area of system programming, web
development, large scale distributed systems and cloud workloads. 0

0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0

0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
1
0
0

Overview of Go
Go or Golang is an open source programming language developed at Google, specially targeted at system
programming and for building large scale distributed systems. It is natively compiled (does not need a VM to run),
statically typed language following the footsteps of system programming languages such as C and C++. But Go is
garbage collected, unlike C and C++.

Go is designed with the philosophy of “Less is exponentially more”. In a blog post dated June 2012, Rob Pike, one of the
designers of the language, reported how a language with less but well-designed features is far better than a language.

Go is not an object-oriented language. While Go support types, methods and interfaces, it does not support classes,
inheritance, overloading of methods or operators.

History of Go
• Go language was originated as an outcome of an experiment by Robert Griesemer, Rob Pike and Ken Thompson at

Google, to design a new system programming language in 2007

• Officially announced in November 2009, it is used in some of Google's production systems as well as by other firms

• Version 1.0 was released in March 2012 and between 2012 and 2015, multiple versions were released

• Version 1.5 was released in August 2015, which is the current stable version

When you think about system programming,
think Go - developed at Google for advanced

technology demands

3Use Go for System Programming, Distributed Systems and Cloud Workloads Mphasis

New Programming Languages

Programming
Language

Backed by /
Developed at

First public
release

Success Paradigm Suitable for

Go (also called
golang)

Google
November
2009

High
Procedural - Designed from ground up with
concurrency in mind. Supports Actor model
based concurrency.

System programming,
large scale distributed
systems, cloud workloads,
web back ends

D Facebook
December
2001

Medium
Procedural,
Object-oriented

System programming,
large scale distributed
systems, web back ends

Rust Mozilla 2010 Medium
Procedural, Object-oriented with functional
programming constructs.

System programming

R Bell Laboratories Late 90s High
Object-oriented with functional and procedural
constructs.

Statistical computing, Big
Data analytics

Scala Open Source 2004 High
Object oriented with influences functional
programming Programming. Supports actor
model based concurrency.

General purpose

Groovy
Apache
Foundation

2004 Medium
Object oriented programming language with
dynamic typing – designed for scripting in mind

General purpose,
scripting focused

Clojure Open Source 2007 Low Functional – Is a dialect of Lisp General purpose

Dart Google 2011 Low

Object-oriented with scripting and functional
programming constructs. Designed from group
up for web development. Supports Actor model
based concurrency.

Web development

TypeScript Microsoft 2012 Medium
Scripting language with Object oriented
constructs. Designed from group up for web
development

Web development

F# Microsoft 2005 Medium
Functional programming language that supports
object oriented concepts

General purpose

Ceylon Red Hat 2011 Low Object oriented General purpose

Swift Apple 2014 High
Object oriented with influences from functional
programming

General purpose

Other System Programming Languages
Language Originator Birth Date Influenced by Used for

ESPOL Burroughs Corporation 1961 Algol 60 MCP

PL/I IBM , SHARE 1964 Algol, FORTRAN , some
COBOL

Multics

PL360 Niklaus Wirth 1968 Algol 60 Algol W

C Dennis Ritchie 1969 BCPL Unix

PL/S IBM 196x PL/I OS/360

BLISS Carnegie Mellon University 1970 Algol-PL/I(5) VMS (portions)

PL/8 IBM 197x PL/I AIX

PL-6 Honeywell. Inc 197x PL/I CP-6

SYMPL CDC 197x JOVIAL NOS subsystems, most complters, FSE editor

C++ Bjarne Stroustrup 1979 C. Simula See C++ Applications(6)

Ada Jean Ichbiah. S. Tucker Taft 1983 Algol 68, Pascal, C++,
Java, Effel

Embedded systems, OS kernels, compilers, games,
simulations, Cubesat, air traffic control, and avionics

D Digital Mars 2001 C++ XomB

Go Google 2009 C, Pasacal, CSP Some Google systems.(7) Docker, Kubernetes,
CoreOS(a)

Rust Mozilla Research(8) 2012 C++, Haskell, Erlang,
Ruby

Servo layput engine

System Programming Languages Developed after 2000

4Use Go for System Programming, Distributed Systems and Cloud Workloads Mphasis

Go Usage
• Many Google web properties and systems including YouTube, Kubernetes containers and download server

dl.google.com

• Docker, a set of tools for deploying Linux containers

• Dropbox, migrated some of their critical components from Python to Go

• SoundCloud, for many of their systems

• Cloud Foundry, a platform as a service (PaaS)

• Couchbase, Query and Indexing services within the Couchbase Server

• MongoDB, tools for administering MongoDB instances

• ThoughtWorks, some tools and applications around continuous delivery and instant messages

• SendGrid, a transactional email delivery and management service

• The BBC, in some games and internal projects

• Novartis, for an internal inventory system

For a complete list of apps and systems that use Go refer-
https://en.wikipedia.org/wiki/Go_(programming_language)#Notable_users and https://github.com/golang/go/wiki/GoUsers

Features that made Go a success

Pointers

Interface

Rich
Standard
Library

Structs and
Methods

First class
functions

Actor Model
Based

Concurrency

First class functions
Go supports first class functions - Functions could be assigned to variables and passed as parameter to other
functions. They could be even returned from other functions. Go supports anonymous functions, multiple return values
from functions and all concepts supported by functional programming languages.

Anonymous Functions

Anonymous Functions are functions without name – they are typically assigned to variable.

func main(){
 add := func(x int, y int) int {return x+y}
 var sub = func(x int, y int) int {return x-y}

 fmt.Println(add(20,30))
 fmt.Println(sub(20,30))
}

https://en.wikipedia.org/wiki/Go_(programming_language)#Notable_users
https://github.com/golang/go/wiki/GoUsers

5Use Go for System Programming, Distributed Systems and Cloud Workloads Mphasis

Functions can be passed to other functions as parameters. In the below example higherOrderFunc is a higher order
function that accepts another function (f func(x int, y int) int) as parameter -

func main(){
 add := func(x int, y int) int {return x+y}
 var sub = func(x int, y int) int {return x-y}

 fmt.Println(add(20,30))
 fmt.Println(sub(20,30))

 fmt.Println(higherOrderFunc(add, 30, 20))
 fmt.Println(higherOrderFunc(sub, 30, 20))
}

func higherOrderFunc(f func(x int, y int) int, num1 int, num2 int) int{
 return f(num1 * num1, num2 * num2)
}

Now the function definition for higherOrderFunc is a bit complicated and could get even more complicated if it accepts
multiple functions as input parameter. This could be simplified by defining a user defined function type.

func main(){
 add := func(x int, y int) int {return x+y}
 var sub = func(x int, y int) int {return x-y}

 fmt.Println(add(20,30))
 fmt.Println(sub(20,30))

 fmt.Println(higherOrderFunc(add, 30, 20))
 fmt.Println(higherOrderFunc(sub, 30, 20))
}

type HigherFunc func(x int, y int) int // user defined function type

func higherOrderFunc(f HigherFunc, num1 int, num2 int) int{
 return f(num1 * num1, num2 * num2)
}

Similarly a higher order function could return another function –

func main(){
 var result = higherOrderFunc2()
 fmt.Println(result(30, 20)) // 50
}

func higherOrderFunc() func(x int, y int)int {
 add := func(x int, y int) int {return x+y}
 return add
}

Go can also return multiple values from a function –

func swap(x, y int) (int, int){
 return y, x
}

var x,y int = 10,20
fmt.Println(x,y) // 10 20

var p,q int = swap(x,y)
fmt.Println(p,q) // 20 10

6Use Go for System Programming, Distributed Systems and Cloud Workloads Mphasis

Structs and Methods

Structs
Go does not support Class, but supports Struct. Structs in Go are typed collections of named fields similar to other
programming languages like C++ and Java. Structs can have methods apart from fields. Struct allows grouping of
fields (data) and methods (behavior).

type Employee struct {
 name string // field name of type string
 age int // field age of type int
 salary float32 // field salary of type float32
 designation string // field designation of type string
}

Structs could be initialized either using new function (Option 1) or using JavaScript like object literal notation (Option 2)
// Option 1 – using new function
emp := new(Employee)
emp.name = "Ken Thompson"
emp.age = 50
emp.salary = 12345.678
emp.designation = "Distinguished Engineer"

// Option 2 – using JavaScript like object literal notation
emp := Employee{}
emp.name = "Ken Thompson"
emp.age = 50
emp.salary = 12345.678
emp.designation = "Distinguished Engineer"

Another alternate is to specify field values as parameters in the same order fields are declared

// Option 3 – parameters should be in the same order fields are declared
emp := Employee{"Ken Thompson", 50, 12345.678, "Distinguished Engineer"}

Note:
; are optional in Go similar to JavaScript.
Local variables could be assigned without specifying their types using := instead of =

Structs can have arrays and other child structs as fields

type Employee struct{
 Name string
 Age int
 Salary float32
 Skills [4]string // Array field
 HomeAddress Address // Nested Child struct as property

}

type Address struct{
 StreetAddress string
 City string
 Country string
}

func main(){
 address := Address{"MG Road", "Blore", "IN"}
 skills := [4]string {"C","Go","Rwust"}
 emp := Employee{"Aniruddha", 40, 123.456, skills, address}
 fmt.Println(emp) // {Aniruddha 40 123.456 [C Go Rust] {MG Road Blore IN}}
 fmt.Println(emp.Skills) // [C Go Rust]
 fmt.Println(emp.HomeAddress.StreetAddress) // M G Road
}

7Use Go for System Programming, Distributed Systems and Cloud Workloads Mphasis

Go simplifies the process and reduces a lot of
effort from programming perspective.

Methods
Apart from member fields, Go structs support defining methods (member functions). Methods of the struct are actually
defined outside the struct declaration, which is unique in Go.

type Employee struct {
 name string
 age int
 designation string
}

// Displayis declaredas a method for Employeestruct
func (emp Employee) Display() {
 fmt.Println("Name:", emp.name, ", Designation:", emp.designation)
}

func main(){
 emp := Employee{name:"Bill G", age:55, designation:"President"}
 emp.Display() // prints Name: Bill G , Designation: President
}

Methods can accept parameter similar to normal functions –

type Employee struct {
 name string
 age int
 designation string
}

// Method for struct Employee that accepts a string input
func (emp Employee) Display(message string) {
 fmt.Println(message, emp.name, ", Designation:", emp.designation)
}

func main(){
 emp := Employee{name:"Bill G", age:55, designation:"President"}
 emp.Display("Hello")
}

Interfaces
Go support interfaces, just like C++, Java and C# do.
Interfaces are named collections of method signatures.
They could be treated as blueprint as they do not provide
implementation. Types that implement an interface is
responsible for providing the actual implementation.
Go is unique in the fact that types do not have to explicitly
use “implements” or other similar declarations to specify
that they are implementing an interface. To implement an
interface, all that types have to do is provide implementation of methods defined in interface.

// An interface called Human is declared with two methods – Walk and Talk
type Human interface {
 Walk(miles int)
 Talk()
}

// A type called Employee is declared which would implement the interface Human
// Note that the type does not specify that it would implement the interface
type Employee struct {
 name string
 designation string
}

8Use Go for System Programming, Distributed Systems and Cloud Workloads Mphasis

Parallelism and concurrency are the key
elements in Go design

// Implementation of methods of Human interface
func (emp Employee) Walk(miles int){
 fmt.Println("I can walk", miles, "miles")
}

// Implementation of methods of Human interface
func (emp Employee) Talk(){
 fmt.Println("I can talk. My name is", emp.name, "and I am a", emp.designation)
}

func main(){
 var emp Human = Employee{name:"Rob Pike", designation:"Architect"}
 emp.Walk(10) // I can walk 10 miles
 emp.Talk() // I can talk. My name is Rob Pike and I am a Architect
}

The type implementing the interface has to implement all the methods specified in the interface. Also, all the method
signatures should match. If both of these conditions are not matched then compiler complains -

type Contractor struct {
 name string
}

func (cont Contractor) Walk(miles string){
 fmt.Println("I can walk", miles, "miles")
}
func main(){
 var cont Human = Contractor{name:"John Smith"}
 cont.Walk("7")
}

Go compiler throws the following error for the above example –

cannot use Contractor literal (type Contractor) as type Human in assignment:
 Contractor does not implement Human (missing Talk method)
cannot use "7" (type string) as type int in argument to cont.Walk

Concurrency (Goroutines and Channels)
Go has been designed from ground up, keeping concurrency
and parallelism in mind. Go’s concurrency is based on a
concept called Communicating Sequential Processes (CSP)
that was introduced by C.A.R. Hoare in a seminal paper in
1978. CSP is similar to the Actor model of currency, which
was made popular by Erlang. CSP takes a different approach
to concurrency, compared to thread / lock based concurrency.
While in thread based concurrency, multiple threads use
shared memory to communicate among themselves, in CSP,
concurrent processes or actor or routines use message passing to communicate. They do not use shared memory thus
avoiding synchronization and synchronization primitive (lock, mutex, monitor, semaphore etc) related issue.

Thread 1

read and write read and write

Thread 2 Thread 3

Shared Memory

Thread based concurrency model with shared memory

9Use Go for System Programming, Distributed Systems and Cloud Workloads Mphasis

Do not communicate by sharing memory; instead, share memory by
communicating – GoLang website

Goroutine
Go uses goroutines for concurrency. A goroutine is a
function that executes concurrently with other goroutines in
the same address space; it’s quite lightweight as compared
to OS threads and is managed by Go runtime. Multiple
goroutines could be executed concurrently thus bringing in
concurrency.

Any function could be executed as a goroutine by prefixing
it with go keyword –

func main() {
 // add function is called as goroutine
 go add(20, 10)

 fmt.Println("add executed")
 fmt.Scanln()
}

func add(x int, y int){
 fmt.Println(x+y)
}

Channel
Channels are the conduit through which messages could be sent and received. For sending and receiving messages
using channel <- operator is used.

Channels could be created using make function. While creating the channel the type of message to be passed using
the channel is specified –

Goroutines make Go easy to use and help
it keep concurrency intact.

Actor 1

Actor 2

Actor 3

S
hared M

em
oryAsynchronous

message passing

Asynchronous
message passing

Asynchronous
message passing

Actor based concurrency model - no shared memory

10Use Go for System Programming, Distributed Systems and Cloud Workloads Mphasis

// Declare and allocate a channel
channel := make(chan string)

// Send a message across the channel
channel <- "message"

// Receive message from the channel
msg:= <- channel

The below example creates two goroutines – one of them behaves as message sender and the other is message
receiver. The message sender then sends the message via a channel and the message receiver receives the message.

Message Receiver
(ReceiveMessage goroutine)

Message Sender
(SendMessage goroutine) Message

Channel

func main(){
 channel := make(chan string)

go SendMessage(channel)
go ReceiveMessage(channel)

 fmt.Scanln();
}

// goroutine that sends the message
func SendMessage(channel chan string) {
 for {
 channel <- "sending message @" + time.Now().String()
 time.Sleep(2 * time.Second)
 }
}

// goroutine that receives the message
func ReceiveMessage(channel chan string) {
 for {
 message := <- channel
 fmt.Println(message)
 }
}

Message Receiver
(ReceiveMessage goroutine)

Message Sender
(SendMessage goroutine)

Acknowledgement Channel

Message Channel

Acknowledgement

Message

func main() {
 // Channel used to send the message from sender to receiver
 msgChannel := make(chan string)
 // Channel used to acknowledge the message receipt by receiver
 ackChannel := make(chan string)

 go SendMessage(msgChannel, ackChannel)
 go ReceiveMessage(msgChannel, ackChannel)

 fmt.Scanln()
}

11Use Go for System Programming, Distributed Systems and Cloud Workloads Mphasis

// goroutine that sends the message
func SendMessage(msgChannel chan string, ackChannel chan string) {
 for {
 // Send the message to message channel
 msgChannel <- "Sending message @" + time.Now().String()
 time.Sleep(2 * time.Second)

// Receive the acknowledgement from acknowledgement channel
 ack := <-ackChannel
 fmt.Println(ack)
 }
}

// goroutine that receives the message
func ReceiveMessage(msgChannel chan string, ackChannel chan string) {
 for {
 // Receive the message from message channel
 message := <-msgChannel
 fmt.Println(message)

 // Send the acknowledgement to acknowledge channel
 ackChannel <- "Message received @" + time.Now().String()
 }
}

Pointers
Unlike some of the new programming languages such as
Java, C#, Ruby, Python and Swift, Go supports pointers.
Pointers in Go behave much the same way as C and C++.
Pointers reference a location in memory where a value is
stored rather than the value itself.

A pointer is represented using the * (asterisk) character
followed by the type of the stored value. The & (ampersand)
operator is used to denote the address of a variable. In the
below example, a pointer is declared that points to an
existing string variable (city). The address of the pointer and
the value it’s pointing to is printed.

var city string = "Bangalore"

// Declare a pointer that points to the address of city variable
ptrToCity := &city

// Print the address of the pointer and value the pointer is pointing to
fmt.Println("&ptrToCity = ", &ptrToCity); // prints the address of the pointer
fmt.Println("*ptrToCity = ", *ptrToCity); // prints the value it’s pointing to

Changing the value of the pointer changes the value of the original value it is pointing to -

var city string = "Bangalore"
var ctr int = 10

// Declare two pointers pointing to city and ctr variables
ptrToCity := &city
ptrToCtr := &ctr

fmt.Println("city = ", city, ", *ptrToCity = ", *ptrToCity);
fmt.Println("ctr = ", ctr, ", *ptrToCtr = ", *ptrToCtr);

Go is one of the most advanced programming
languages for a reason - it supports the

use of pointers.

12Use Go for System Programming, Distributed Systems and Cloud Workloads Mphasis

// Change the values of the pointers
*ptrToCity = "Kolkata"
*ptrToCtr = 20

// The original variables to which pointers are pointing is also changed
fmt.Println("city = ", city, ", *ptrToCity = ", *ptrToCity);
fmt.Println("ctr = ", ctr, ", *ptrToCtr = ", *ptrToCtr);

Rich standard library
Go comes with a large no of packages that provide common functionality such as File handling, IO, String handling,
Cryptography etc. Below is a list of popularly used Go packages -

Sl. No Description Package Name

1 String manipulation Strings

2 Input and Output io, bytes

3 Files and Folders os, path/filepath

4 Errors Errors

5 Containers & Sort container/list

6 Hashes and Cryptography hash, crypto

7 Encoding encoding/sob

8 Allows interacting with Go's runtime system, such as functions to control goroutines Runtime

9 Synchronization Primitives Sync

10 Server communication, RPC, HTTP, SMTP etc. net, http/rpc/jsonrpc

11 Math library Math

12 Zip, Archive, Compress archive, compress

13 Database related database, sql

14 Debugging Debug

15 Automated testing Testing

Other highlights of Go
1. Go is statically typed
2. Natively compiled, but garbage collected
3. Go is statically typed with optional type inference
4. Supports Defer, Panic and Recover for error handling
5. Does not support classes and inheritance

6. Does not support overloading of methods
and operators

7. Go compiler compiles source code very fast.
8. Does not support Generics

Conclusion
Go has evolved as a major programming language suitable for not only system programming, but also for cloud
workloads. Go is supported by multiple cloud platforms, including Google Cloud Platform (App Engine), Cloud
Foundry (including Pivotal Web Service), Heroku and AWS Elastic Beanstalk. Microsoft also added "experimental
support" for Go into its Azure cloud service. Go is becoming a popular language of choice for system programming,
web development, large scale distributed systems and cloud workloads.

Further Reading
• Less is exponentially more: A blog by Rob Pike - http://commandcenter.blogspot.de/2012/06/less-is-exponentially-more.html
• Go website - https://golang.org
• Go FAQ - https://golang.org/doc/faq#Is_Go_an_object-oriented_language
• Go By Example - https://gobyexample.com/
• An Introduction to Programming in Go - https://www.golang-book.com/books/intro
• Little Go Book - http://openmymind.net/assets/go/go.pdf
• Effective Go - https://golang.org/doc/effective_go.html
• Communicating Sequential Processes - https://en.wikipedia.org/wiki/Communicating_sequential_processes

Copyright ©: The brand names mentioned in this POV (Go, D, Rust, C, C++, AWS, Heroku, Google Cloud Platform,
Cloud Foundry, Pivotal Web Service, Azure etc.) belong to their respective owners.

13Use Go for System Programming, Distributed Systems and Cloud Workloads Mphasis

Aniruddha Chakrabarti
Associate Vice President, Digital, Mphasis

Aniruddha has 16+ years of IT experience spread across systems integration,
technology consulting, IT outsourcing and product development. He has
extensive experience of delivery leadership, solution architecture, presales,
technology architecture and program management of large scale distributed
systems.

As AVP, Digital in Mphasis, Aniruddha is responsible for Presales, Solutions,
RFP/RFI and Capability Development of Digital Practice. Before as Sr.
Manager & Sr. Principal Architect in Accenture, he was responsible for
presales, architecture and leading large delivery teams. He had played
delivery leadership and architecture focused roles in Microsoft, Target, Misys
and Cognizant.

His interests include digital, cloud, mobility, IoT, cognitive computing, NLP,
distributed systems, web, open source, .NET, Java, programming languages
and NoSQL. His industry experience spans Retail, Healthcare, Capital Markets,
Insurance, Travel, Hospitality, Pharma and Medical Technology.

USA
460 Park Avenue South
Suite #1101
New York, NY 10016, USA
Tel.: +1 212 686 6655
Fax: +1 212 683 1690

Copyright © Mphasis Corporation. All rights reserved.

UK
88 Wood Street
London EC2V 7RS, UK
Tel.: +44 20 8528 1000
Fax: +44 20 8528 1001

For more information, contact: marketinginfo@mphasis.com
INDIA
Bagmane World Technology Center
Marathahalli Ring Road
Doddanakundhi Village
Mahadevapura
Bangalore 560 048, India
Tel.: +91 80 3352 5000
Fax: +91 80 6695 9942 VA

L
18

/0
1/

19
 U

S
 L

et
te

r B
A

S
IL

 4
02

0

www.mphasis.com

About Mphasis
Mphasis (BSE: 526299; NSE: MPHASIS) applies next-generation technology to help enterprises transform businesses globally. Customer centricity
is foundational to Mphasis and is reflected in the Mphasis’ Front2Back™ Transformation approach. Front2Back™ uses the exponential power
of cloud and cognitive to provide hyper-personalized (C = X2C2

™ = 1) digital experience to clients and their end customers. Mphasis’ Service
Transformation approach helps ‘shrink the core’ through the application of digital technologies across legacy environments within an enterprise,
enabling businesses to stay ahead in a changing world. Mphasis’ core reference architectures and tools, speed and innovation with domain
expertise and specialization are key to building strong relationships with marquee clients. To know more, please visit www.mphasis.com

www.mphasis.com

