
Error Handling Framework for
Data Lakes Whitepaper by

Hitesh Chauha
Project Lead, Mphasis

Nagaraj Niranji
Sr. Software Engineer, Mphasis

Introduction
The Data process life cycle of a data lake starts from
ingesting the data from multiple sources, processing it
in various stages and finally storing the processed data
in to multiple No-SQL databases. However, debugging
this kind of application is often a tough job. Therefore
robust exception and error handing mechanism is required
to process the data without any failure or interrupt.
Apache Spark is a lightning fast framework for
implementing highly scalable applications. The data and
processing logic is spread over the data nodes for parallel
processing and faster execution.

Need for Effective Error Handling
Exceptions need to be treated carefully because a simple
runtime exception caused by dirty source data can easily
lead to the termination of the whole process. Data gets
transformed in order to be joined and matched with other
data, which usually gets ingested from multiple sources.
While ingesting data from data sources, uncertainty about
nature of data and the transformation algorithms that are
often provided by the application coder, causes the job to
terminate with error.

For example, take the following generic data processing
model in using Spark/Kafka, without error handling in place.

Error Handling Framework - Benefits
A data lake is typically sourced with millions of records.
The ingestion and processing applications need to process
millions of records. The probability of having wrong/dirty
data in such scenario is high and non-negligible. Hence,
instead of letting the process terminate or loading the
bad/dirty data to the data lake, it is more desirable to
implement an error handling framework that manages
the errors effectively and automates the re-processing
adequately. The error handling framework should also
classify the errors that can be re-processed so that the
process doesn’t restart from the source.

Provided above is an overview of the process and its
benefits.

•	 For	low	error	rate,	handle	each	error	individually.

•	 	Open	connection	to	storage,	save	error	packages	for	
later processing

•	 Clog	the	stream	for	high	error	rate	streams

The errors can be grouped as Fatal and Non-Fatal Errors.
Fatal errors are those that cause a program to abort due
to hardware, network or infrastructure issues. Non-Fatal
errors are caused by the underlying files and bad data. The
rest of this document provides an error handling framework
for building a data lake and it uses Spark examples as
needed.

The multiple ways you can avoid an
ERROR..

•	 Retry	micro	batch	n	number	of	times

•	 	If	all	the	retries	are	failed,	kill	the	streaming	
job manually

•	 Continuous	trial	and	error	

Data
Ingestionts

Message
Broker X

Micro-
batch

Spark
Streaming

Error

Data
Collections

Message
Broker

Micro-
batch

Micro-
batch

Spark
Streaming

Error Error
handling

MySQL
(Errors)

•			Data	check	pointing	-	Saving	the	generated	Resilient	
Distributed	Data	Sets(RDDs)	to	reliable	storage.	This	is	
necessary in some stateful transformations that combine
data	across	multiple	batches.	In	such	transformations,	
the	generated	RDDs	depend	on	RDDs	of	previous	
batches, which causes the length of the dependency
chain to keep increasing with time. To avoid such
unbounded increase in recovery time (proportional
to	dependency	chain),	intermediate	RDDs	of	stateful	
transformations are periodically check pointed to reliable
storage (e.g. HDFS) to cut off the dependency chains.

4.1. Examples of some fatal error handling

•		No	Such	Field	Error:

 - When we use our own build of Spark against an
older	version	of	Hive	than	what’s	in	CDH.

 - There might be dependency issue in the classpath.
Maven might be pulling down a very old version of
the dependency jar

•		java.lang.Null	Pointer	Exception:

 - This is what shows up when the main method isn’t
static

 - We might be referring to other class

•		java.lang.Out	Of	Memory	Error

	 -		If	your	nodes	have	6g,	then	use	6g	rather	than	4g,	
spark.executor.memory=6g.	Make	sure	you’re	using	
all	the	memory	by	checking	the	UI	(it	will	say	how	
much memory you’re using)

	 -		Try	using	more	partitions,	you	should	have	2	-	4	
per	CPU.	Input	method	editor	(IME)	increasing	the	
number of partitions is often the easiest way to
make a program more stable (and often faster). For
huge amounts of data you may need way more than
4	per	CPU,	I’ve	had	to	use	8000	partitions	in	some	
cases

 - Decrease the fraction of memory reserved for
caching	by	using	spark.storage.memoryFraction.	If	
you don’t use cache() or persist in your code, this
might	as	well	be	0.	The	default	value	is	0.6,	which	
means	you	only	get	0.4	*	4g	memory	for	your	heap.	
IME	reducing	the	memory	fraction	often	makes	out	
of	memory	exception(OOMs)	go	away.	UPDATE:	
Apparently	with	spark	1.6	we	will	no	longer	need	to	
play with these values; spark will determine them
automatically.

	 -		Similar	to	above	but	it	shuffles	memory	fraction.	If	
your job needs more shuffle memory then set it to a
lower value (this might cause your shuffles to spill to
disk which can have catastrophic impact on speed).
Sometimes when it’s a shuffle which is causing out
of memory, you need to do opposite i.e. set it to
something	large,	like	0.8,	or	make	sure	you	allow	
your shuffles to spill to disk (it’s the default since
1.0.0).

 Fatal Errors and Exception Handling
A fatal error occurs when the Spark job cannot access
the source, target, or repository. There are unexpected
errors such as, data-source or target connection errors,
missing required configuration with spark context errors,
etc., which force the spark job to stop running and
abort immediately. To handle fatal errors, we can first
log an error in Error table and then allow the job to be
terminated. An entry can be made to the error handling
table	using	the	JOB_TERMINATED	=	‘Y’,	which	indicates	
that the job is failed due to a fatal error.

In	case	of	job	terminate	or	abort	because	of	fatal	error,	
we	can	restart	the	spark	job.	Restartability	is	the	ability	to	
restart the spark job if a processing step fails to execute
properly. This will avoid the need of any manual cleaning
up before a failed job can restart.

 We need the ability to restart processing at the step
where it failed as well as the ability to restart the entire

job. To restart processing at the step where it failed, we
can	use	Spark	Check-Point	to	a	fault-	tolerant	storage	
system such that it can recover from failures. There are
two types of data that are check pointed.

•			Metadata	check	point	-	Saving	the	state	of	streaming	
computation job to fault-tolerant storage, like Hadoop
Distributed File System(HDFS). This is used to
recover from failure of the node running the driver of
the streaming application (discussed in detail later).
Metadata	includes:	

-		Configuration	-	The	configuration	that	was	used	to	
create the streaming application.

- DStream operations - The set of DStream operations
that define the streaming application.

-	 	Incomplete	batches	-	Batches	whose	jobs	are	
queued but have not completed yet.

The best way to handle a fatal error
is by restarting a job which avoids
the need of manual cleaning.

Error handling framework helps you
fight against both fatal and non-
fatal errors.

 - Watch out for memory leaks as these are often
caused by accidentally closing over objects you
don’t need in your lambdas. The way to diagnose is
to look out for the “task serialized as XXX bytes” in
the	logs.	If	XXX	is	larger	than	a	few	KB	or	more	than	
a MB, you may have a memory leak

•		java.io.IOException:	Filesystem	closed:

	 -			If	there	is	a	large	shuffle,	it	might	be	an	out-of-
memory error that causes executor failure, which
then causes the Hadoop Filesystem to be closed
in	their	shutdown	hook.	So,	the	RecordReaders	
in running tasks of that executor throw “java.
io.IOException:	Filesystem	closed”	exception.

•		java.lang.Illegal	State	Exception:

 - The problem is caused by missing jars in the spark
project; you need to add these jars to your project
classpath

 - Hadoop and Spark built into an app, or the cluster’s
version of Spark are not matched with the Hadoop
version.

•		java.lang.Unsupported	Class	Version	Error:

	 -		Setting	JAVA_HOME	at	whole	cluster	level

 - Add compatible dependencies for spark core & Java
in pom.xml

•		Error:scala.reflect.internal.Missing	Requirement	Error:

 - This happens when you don’t have all of the
dependencies for Scala reflection loaded by the
primordial classloader. For running apps from SBT(
an	open	source	build	tool	for	Scala)	setting	fork	:=	
true should do the trick.

	 -		Find	your	launch	configuration	and	go	to	“Classpath”

	 -		Remove	Scala	Library	and	Scala	Compiler	from	the	
“Bootstrap” entries

 - Add (as external jars) scala-reflect, scala-library and
scala-compiler to user entries

 - Make sure to add the right version

Non-Fatal Errors and Exception
Handling

5.1. File Level Errors

The source data includes different data files and their
corresponding metadata files which consists of metadata
such as file size, no. of records, schema etc. A series of
spark jobs can be designed to run on the source files once
the data is ingested in the HDFS. These jobs handle the
error exceptions for different scenarios.

Following are the list of file level checks that can be
performed without getting into the semantics of the
underlying data.

1. File Size

2. # records

3. Schema

4.	Threshold	Limit

The results of the above file level validations are stored in
an	error	handling	table.	If	a	file	does	not	match	any	one	of	
these validations, then that file is corrupted and can’t be
reprocessed in its current state. The file needs to be re-
ingested and then processed.

Data
File

File size #	Records Schema
Threshold

Limit

Error & Exception table

Source Data

Spark Jobs

Metadata
File

5.2. Data Level Errors or Data Quality

The data level errors can be categorized as soft errors and hard errors.

Hard	Error/Exceptions:	These	are	the	validations	that	are	mandatory	to	process	the	record	further	to	the	data	lake.	For	

example,	Employee	ID	in	a	salary	table	can’t	be	blank.	A	record	is	not	valid	if	it	does	not	meet	this	validation	and	such	

records are dropped out from further processing and not made to the target data lake. These records with respective

error information are loaded to the error table for further analysis and re-processing.

Soft	Error/Exceptions:	The	validations	that	are	nice	to	have	or	desired	on	a	data	record	are	soft	exceptions.	These	

records do not disturb the defined quality/integrity of the data lake, but they do not meet certain pre-defined validation

rules. Error handing framework should allow them to be processed further and also loaded to the error table for further

analysis, prevention and hence, reduction of the errors.

Typically,	the	set	of	data	quality	validations	and	checks	are	defined	by	the	Business	and	IT	Engineers	together.

Non-fatal errors can be handled by
introducing file level validations..

5.3. Automating the Data Quality Checks

•			The	data	is	ingested	to	the	data	lake	and	initially	set	

Filter	processed	flag	=	N	&	Error	fixed	flag	=Y

•		If	the	data	is:	

 - Valid	(meets	the	pre-defined	validation	rules)	Data	-	

then it is checked if it came from the error table after

fixing	the	error.	If	yes	then	set	the	processed	flag=	Y	

and	load	the	data	to	Data	hub.	If	data	is	not	from	the	

error table then it is directly loaded to Data hub.

 - Invalid	Data	-	If	the	data	doesn’t	the	validation	rules	

then set the processed flag = N & Error fixed flag = N

and load the data along with respective error details

to the error table.

•			After	the	error	data	is	corrected	the	iteration	again	

continuous from validation.

Filter changed data Filter processed flag = N
Error	Fixed	flag	=	Y

Data Hub Error table

Transformation Logic

Valid	
Data?

Load target table

Filter processed flag = N
Error Fixed flag = N

Source from
Error table? Set	Processed	flag	=	Y

Source Error table

NO	(Error	or	Exception)

YES

YES

NO

Error Table Defined

Error Table
JOB_ID																															Decimal(50)

JOB_SRT_	TIME																		TimeStamp(19)

SRC_LIST																												VarChar(200)

TRG_LIST																												VarChar(200)

JOB_TERMINATED														VarChar(1)

ERR_SEQ_ID																								Decimal(10)

ERR_MSG																												VarChar(2000)

ERR_TIME																												TimeStamp(19)

USR_NAME																									VarChar(50)

ERR_DATA_COL_1															VarChar(200)

ERR_DATA_COL_2															VarChar(200)

ERR_DATA_COL_3															VarChar(200)

.

.

ERR_DATA_COL_N														VarChar(200)

ERR_FIXED_FLAG																	VarChar(1)

ERR_PROCESSED_FLAG							VarChar(1)

Columns	description:

1.	 	JOB_ID:	Contains	the	JOB_ID	for	the	corresponding	job	which	processes	the	data

2.	 JOB_SRT_TIME	:	Contains	the	job	start	time

3.	 	SRC_LIST	:	Contains	the	list	of	source	from	where	the	data	is	expected	as	input	for	job

4.	 	TRG_LIST	:	Contains	list	of	target	storage	to	which	data	is	expected	to	be	stored	by	job

5.	 	JOB_TERMINATED	:	Indicator	or	a	flag	that	is	set	to	Y,	if	job	is	terminated	after	an	exception

6.	 	ERR_SEQ_ID:	Contains	the	ERR_SEQ_ID	for	the	corresponding	error	or	exception	thrown.

7.	 ERR_MSG	:	Describes	Error	message	in	detail

8.	 ERR_TIME	:	Time	of	error	thrown	by	job

9.	 USR_NAME	:	User	details

10.	 ERR_DATA_COL_N	:	Source	data	elements

11.	 	ERR_FIXED_FLAG	:	Value	is	set	to	Y,	if	data	issue	is	fixed	and	ready	to	process,	else	N.

12.	 	ERR_PROCESSED_FLAG	:	Value	is	set	to	Y,	if	data	is	processed	else	set	to	N.

Hitesh Chauhan
Project Lead – Mphasis Analytics Practice

Hitesh	has	10	years	of	experience	in	designing,	developing	analytics	
solutions using technologies like Big Data and Java. Heis well experienced
in	Hadoop	and	Spark.	He	has	played	multiple	roles	in	the	IT	industry	-	
developer, architect and team lead. Data management, data analytics
are some of the key areas he is interested in. Hitesh is currently working
as a project lead at Mphasis and is responsible for developing spark
transformations, exception handling and building the presentation layers.

Nagaraj Niranji
Sr. Software Engineer – Mphasis Analytics Practice

Nagaraj	has	5	years	of	experience	in	designing	and	developing	Java	and	
BigData solutions using Hadoop and Spark technologies. He has played
multiple	roles	in	the	IT	industry;	he	has	worked	as	a	developer	and	a	team	
lead.

Nagaraj is a Senior Software Engineer at Mphasis for five months now.
Prior	to	this	he	worked	for	Cognizant	Technology	Solutions	and	HCL	
Technologies.	He	is	a	bachelor	of	engineering	from	MS	Ramaiah	Institute	of	
Technology.

Copyright	©	Mphasis	Corporation.	All	rights	reserved.	

For	more	information,	contact:	marketinginfo@mphasis.com

www.mphasis.com

INDIA
Bagmane	World	Technology	Center
Marathahalli	Ring	Road
Doddanakundhi	Village
Mahadevapura
Bangalore	560	048,	India
Tel.:	+91	80	3352	5000

USA
226	Airport	Parkway
San Jose
California,	95110
USA

UK
88	Wood	Street
London	EC2V	7RS,	UK
Tel.:	+44	20	8528	1000

USA
460	Park	Avenue	South
Suite	#1101
New	York,	NY	10016,	USA
Tel.:	+1	212	686	6655

VA
S

30
/1

1/
16

 U
S

LE
TT

ER
 B

AS
IL

41
87

About Mphasis
Mphasis is a global technology services and solutions company specializing in the areas of Digital, Governance and Risk & Compliance. Our solution focus
and superior human capital propels our partnership with large enterprise customers in their digital transformation journeys. We partner with global financial
institutions in the execution of their risk and compliance strategies. We focus on next generation technologies for differentiated solutions delivering
optimized operations for clients.

