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Introduction
The Data process life cycle of a data lake starts from 
ingesting the data from multiple sources, processing it 
in various stages and finally storing the processed data 
in to multiple No-SQL databases. However, debugging  
this kind of application is often a tough job. Therefore 
robust exception and error handing mechanism is required 
to process the data without any failure or interrupt. 
Apache Spark is a lightning fast framework for 
implementing highly scalable applications. The data and 
processing logic is spread over the data nodes for parallel  
processing and faster execution.

Need for Effective Error Handling
Exceptions need to be treated carefully because a simple 
runtime exception caused by dirty source data can easily 
lead to the termination of the whole process. Data gets 
transformed in order to be joined and matched with other 
data, which usually gets ingested from multiple sources. 
While ingesting data from data sources, uncertainty about 
nature of data and the transformation algorithms that are 
often provided by the application coder, causes the job to 
terminate with error.

For example, take the following generic data processing 
model in using Spark/Kafka, without error handling in place.

Error Handling Framework - Benefits
A data lake is typically sourced with millions of records. 
The ingestion and processing applications need to process 
millions of records. The probability of having wrong/dirty 
data in such scenario is high and non-negligible. Hence, 
instead of letting the process terminate or loading the 
bad/dirty data to the data lake, it is more desirable to 
implement an error handling framework that manages 
the errors effectively and automates the re-processing 
adequately. The error handling framework should also 
classify the errors that can be re-processed so that the 
process doesn’t restart from the source.

Provided above is an overview of the process and its 
benefits.

•	 For low error rate, handle each error individually.

•	 �Open connection to storage, save error packages for 
later processing 

•	 Clog the stream for high error rate streams

The errors can be grouped as Fatal and Non-Fatal Errors. 
Fatal errors are those that cause a program to abort due 
to hardware, network or infrastructure issues. Non-Fatal 
errors are caused by the underlying files and bad data. The 
rest of this document provides an error handling framework 
for building a data lake and it uses Spark examples as 
needed.

The multiple ways you can avoid an 
ERROR..

•	 Retry micro batch n number of times

•	 �If all the retries are failed, kill the streaming 
job manually 

•	 Continuous trial and error 
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•  �Data check pointing - Saving the generated Resilient 
Distributed Data Sets(RDDs) to reliable storage. This is 
necessary in some stateful transformations that combine 
data across multiple batches. In such transformations, 
the generated RDDs depend on RDDs of previous 
batches, which causes the length of the dependency 
chain to keep increasing with time. To avoid such 
unbounded increase in recovery time (proportional 
to dependency chain), intermediate RDDs of stateful 
transformations are periodically check pointed to reliable 
storage (e.g. HDFS) to cut off the dependency chains.

4.1.	Examples of some fatal error handling

•  No Such Field Error:

	 - �When we use our own build of Spark against an 
older version of Hive than what’s in CDH.

	 - �There might be dependency issue in the classpath. 
Maven might be pulling down a very old version of 
the dependency jar

•  java.lang.Null Pointer Exception:

	 - �This is what shows up when the main method isn’t 
static

	 - �We might be referring to other class

•  java.lang.Out Of Memory Error

	 - �If your nodes have 6g, then use 6g rather than 4g, 
spark.executor.memory=6g. Make sure you’re using 
all the memory by checking the UI (it will say how 
much memory you’re using)

	 - �Try using more partitions, you should have 2 - 4 
per CPU. Input method editor (IME) increasing the 
number of partitions is often the easiest way to 
make a program more stable (and often faster). For 
huge amounts of data you may need way more than 
4 per CPU, I’ve had to use 8000 partitions in some 
cases

	 - �Decrease the fraction of memory reserved for 
caching by using spark.storage.memoryFraction. If 
you don’t use cache() or persist in your code, this 
might as well be 0. The default value is 0.6, which 
means you only get 0.4 * 4g memory for your heap. 
IME reducing the memory fraction often makes out 
of memory exception(OOMs) go away. UPDATE: 
Apparently with spark 1.6 we will no longer need to 
play with these values; spark will determine them 
automatically.

	 - �Similar to above but it shuffles memory fraction. If 
your job needs more shuffle memory then set it to a 
lower value (this might cause your shuffles to spill to 
disk which can have catastrophic impact on speed). 
Sometimes when it’s a shuffle which is causing out 
of memory, you need to do opposite i.e. set it to 
something large, like 0.8, or make sure you allow 
your shuffles to spill to disk (it’s the default since 
1.0.0).

�Fatal Errors and Exception Handling
A fatal error occurs when the Spark job cannot access 
the source, target, or repository. There are unexpected 
errors such as, data-source or target connection errors, 
missing required configuration with spark context errors, 
etc., which force the spark job to stop running and 
abort immediately. To handle fatal errors, we can first 
log an error in Error table and then allow the job to be 
terminated. An entry can be made to the error handling 
table using the JOB_TERMINATED = ‘Y’, which indicates 
that the job is failed due to a fatal error. 

In case of job terminate or abort because of fatal error, 
we can restart the spark job. Restartability is the ability to 
restart the spark job if a processing step fails to execute 
properly. This will avoid the need of any manual cleaning 
up before a failed job can restart.

 We need the ability to restart processing at the step 
where it failed as well as the ability to restart the entire 

job. To restart processing at the step where it failed, we 
can use Spark Check-Point to a fault- tolerant storage 
system such that it can recover from failures. There are 
two types of data that are check pointed.

•  �Metadata check point - Saving the state of streaming 
computation job to fault-tolerant storage, like Hadoop 
Distributed File System(HDFS). This is used to 
recover from failure of the node running the driver of 
the streaming application (discussed in detail later). 
Metadata includes: 

- �Configuration - The configuration that was used to 
create the streaming application.

- �DStream operations - The set of DStream operations 
that define the streaming application.

-	 �Incomplete batches - Batches whose jobs are 
queued but have not completed yet.

The best way to handle a fatal error 
is by restarting a job which avoids 
the need of manual cleaning.

Error handling framework helps you 
fight against both fatal and non-
fatal errors.



	 - �Watch out for memory leaks as these are often 
caused by accidentally closing over objects you 
don’t need in your lambdas. The way to diagnose is 
to look out for the “task serialized as XXX bytes” in 
the logs. If XXX is larger than a few KB or more than 
a MB, you may have a memory leak

•  java.io.IOException: Filesystem closed:

	 - ��If there is a large shuffle, it might be an out-of-
memory error that causes executor failure, which 
then causes the Hadoop Filesystem to be closed 
in their shutdown hook. So, the RecordReaders 
in running tasks of that executor throw “java.
io.IOException: Filesystem closed” exception.

•  java.lang.Illegal State Exception:

	 - �The problem is caused by missing jars in the spark 
project; you need to add these jars to your project 
classpath

	 - �Hadoop and Spark built into an app, or the cluster’s 
version of Spark are not matched with the Hadoop 
version.

•  java.lang.Unsupported Class Version Error:

	 - �Setting JAVA_HOME at whole cluster level

	 - �Add compatible dependencies for spark core & Java 
in pom.xml

•  Error:scala.reflect.internal.Missing Requirement Error:

	 - �This happens when you don’t have all of the 
dependencies for Scala reflection loaded by the 
primordial classloader. For running apps from SBT( 
an open source build tool for Scala) setting fork := 
true should do the trick. 

	 - �Find your launch configuration and go to “Classpath”

	 - �Remove Scala Library and Scala Compiler from the 
“Bootstrap” entries

	 - �Add (as external jars) scala-reflect, scala-library and 
scala-compiler to user entries

	 - �Make sure to add the right version

Non-Fatal Errors and Exception 
Handling

5.1.	File Level Errors

The source data includes different data files and their 
corresponding metadata files which consists of metadata 
such as file size, no. of records, schema etc. A series of 
spark jobs can be designed to run on the source files once 
the data is ingested in the HDFS. These jobs handle the 
error exceptions for different scenarios. 

Following are the list of file level checks that can be 
performed without getting into the semantics of the 
underlying data. 

1.	File Size

2.	# records

3.	Schema

4.	Threshold Limit

The results of the above file level validations are stored in 
an error handling table. If a file does not match any one of 
these validations, then that file is corrupted and can’t be 
reprocessed in its current state. The file needs to be re-
ingested and then processed.
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5.2.	Data Level Errors or Data Quality

The data level errors can be categorized as soft errors and hard errors.

Hard Error/Exceptions: These are the validations that are mandatory to process the record further to the data lake. For 

example, Employee ID in a salary table can’t be blank. A record is not valid if it does not meet this validation and such 

records are dropped out from further processing and not made to the target data lake. These records with respective 

error information are loaded to the error table for further analysis and re-processing.

Soft Error/Exceptions: The validations that are nice to have or desired on a data record are soft exceptions. These 

records do not disturb the defined quality/integrity of the data lake, but they do not meet certain pre-defined validation 

rules. Error handing framework should allow them to be processed further and also loaded to the error table for further 

analysis, prevention and hence, reduction of the errors. 

Typically, the set of data quality validations and checks are defined by the Business and IT Engineers together.

Non-fatal errors can be handled by 
introducing file level validations..



5.3.	Automating the Data Quality Checks

•  �The data is ingested to the data lake and initially set 

Filter processed flag = N & Error fixed flag =Y

•  If the data is: 

	 - �Valid (meets the pre-defined validation rules) Data - 

then it is checked if it came from the error table after 

fixing the error. If yes then set the processed flag= Y 

and load the data to Data hub. If data is not from the 

error table then it is directly loaded to Data hub.

	- �Invalid Data - If the data doesn’t the validation rules 

then set the processed flag = N & Error fixed flag = N 

and load the data along with respective error details 

to the error table.

•  �After the error data is corrected the iteration again 

continuous from validation.

Filter changed data  Filter processed flag = N
Error Fixed flag = Y

Data Hub Error table

Transformation Logic

Valid 
Data?

Load target table

Filter processed flag = N
Error Fixed flag = N

Source from 
Error table? Set Processed flag = Y

Source Error table

NO (Error or Exception)
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Error Table Defined

Error Table 
JOB_ID                               Decimal(50)

JOB_SRT_ TIME                  TimeStamp(19)

SRC_LIST                            VarChar(200)

TRG_LIST                            VarChar(200)

JOB_TERMINATED              VarChar(1)

ERR_SEQ_ID                        Decimal(10)

ERR_MSG                            VarChar(2000)

ERR_TIME                            TimeStamp(19)

USR_NAME                         VarChar(50)

ERR_DATA_COL_1               VarChar(200)

ERR_DATA_COL_2               VarChar(200)

ERR_DATA_COL_3               VarChar(200)

.

.

ERR_DATA_COL_N              VarChar(200)

ERR_FIXED_FLAG                 VarChar(1)

ERR_PROCESSED_FLAG       VarChar(1)

Columns description:

1.	 �JOB_ID: Contains the JOB_ID for the corresponding job which processes the data

2.	 JOB_SRT_TIME : Contains the job start time

3.	 �SRC_LIST : Contains the list of source from where the data is expected as input for job

4.	 �TRG_LIST : Contains list of target storage to which data is expected to be stored by job

5.	 �JOB_TERMINATED : Indicator or a flag that is set to Y, if job is terminated after an exception

6.	 �ERR_SEQ_ID: Contains the ERR_SEQ_ID for the corresponding error or exception thrown.

7.	 ERR_MSG : Describes Error message in detail

8.	 ERR_TIME : Time of error thrown by job

9.	 USR_NAME : User details

10.	 ERR_DATA_COL_N : Source data elements

11.	 �ERR_FIXED_FLAG : Value is set to Y, if data issue is fixed and ready to process, else N.

12.	 �ERR_PROCESSED_FLAG : Value is set to Y, if data is processed else set to N.
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