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Introduction
The Data process life cycle of a data lake starts from 
ingesting the data from multiple sources, processing it 
in various stages and finally storing the processed data 
in to multiple No-SQL databases. However, debugging  
this kind of application is often a tough job. Therefore 
robust exception and error handing mechanism is required 
to process the data without any failure or interrupt. 
Apache Spark is a lightning fast framework for 
implementing highly scalable applications. The data and 
processing logic is spread over the data nodes for parallel  
processing and faster execution.

Need for Effective Error Handling
Exceptions need to be treated carefully because a simple 
runtime exception caused by dirty source data can easily 
lead to the termination of the whole process. Data gets 
transformed in order to be joined and matched with other 
data, which usually gets ingested from multiple sources. 
While ingesting data from data sources, uncertainty about 
nature of data and the transformation algorithms that are 
often provided by the application coder, causes the job to 
terminate with error.

For example, take the following generic data processing 
model in using Spark/Kafka, without error handling in place.

Error Handling Framework - Benefits
A data lake is typically sourced with millions of records. 
The ingestion and processing applications need to process 
millions of records. The probability of having wrong/dirty 
data in such scenario is high and non-negligible. Hence, 
instead of letting the process terminate or loading the 
bad/dirty data to the data lake, it is more desirable to 
implement an error handling framework that manages 
the errors effectively and automates the re-processing 
adequately. The error handling framework should also 
classify the errors that can be re-processed so that the 
process doesn’t restart from the source.

Provided above is an overview of the process and its 
benefits.

•	 For	low	error	rate,	handle	each	error	individually.

•	 	Open	connection	to	storage,	save	error	packages	for	
later processing 

•	 Clog	the	stream	for	high	error	rate	streams

The errors can be grouped as Fatal and Non-Fatal Errors. 
Fatal errors are those that cause a program to abort due 
to hardware, network or infrastructure issues. Non-Fatal 
errors are caused by the underlying files and bad data. The 
rest of this document provides an error handling framework 
for building a data lake and it uses Spark examples as 
needed.

The multiple ways you can avoid an 
ERROR..

•	 Retry	micro	batch	n	number	of	times

•	 	If	all	the	retries	are	failed,	kill	the	streaming	
job manually 

•	 Continuous	trial	and	error	
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•			Data	check	pointing	-	Saving	the	generated	Resilient	
Distributed	Data	Sets(RDDs)	to	reliable	storage.	This	is	
necessary in some stateful transformations that combine 
data	across	multiple	batches.	In	such	transformations,	
the	generated	RDDs	depend	on	RDDs	of	previous	
batches, which causes the length of the dependency 
chain to keep increasing with time. To avoid such 
unbounded increase in recovery time (proportional 
to	dependency	chain),	intermediate	RDDs	of	stateful	
transformations are periodically check pointed to reliable 
storage (e.g. HDFS) to cut off the dependency chains.

4.1. Examples of some fatal error handling

•		No	Such	Field	Error:

 -  When we use our own build of Spark against an 
older	version	of	Hive	than	what’s	in	CDH.

 -  There might be dependency issue in the classpath. 
Maven might be pulling down a very old version of 
the dependency jar

•		java.lang.Null	Pointer	Exception:

 -  This is what shows up when the main method isn’t 
static

 -  We might be referring to other class

•		java.lang.Out	Of	Memory	Error

	 -		If	your	nodes	have	6g,	then	use	6g	rather	than	4g,	
spark.executor.memory=6g.	Make	sure	you’re	using	
all	the	memory	by	checking	the	UI	(it	will	say	how	
much memory you’re using)

	 -		Try	using	more	partitions,	you	should	have	2	-	4	
per	CPU.	Input	method	editor	(IME)	increasing	the	
number of partitions is often the easiest way to 
make a program more stable (and often faster). For 
huge amounts of data you may need way more than 
4	per	CPU,	I’ve	had	to	use	8000	partitions	in	some	
cases

 -  Decrease the fraction of memory reserved for 
caching	by	using	spark.storage.memoryFraction.	If	
you don’t use cache() or persist in your code, this 
might	as	well	be	0.	The	default	value	is	0.6,	which	
means	you	only	get	0.4	*	4g	memory	for	your	heap.	
IME	reducing	the	memory	fraction	often	makes	out	
of	memory	exception(OOMs)	go	away.	UPDATE:	
Apparently	with	spark	1.6	we	will	no	longer	need	to	
play with these values; spark will determine them 
automatically.

	 -		Similar	to	above	but	it	shuffles	memory	fraction.	If	
your job needs more shuffle memory then set it to a 
lower value (this might cause your shuffles to spill to 
disk which can have catastrophic impact on speed). 
Sometimes when it’s a shuffle which is causing out 
of memory, you need to do opposite i.e. set it to 
something	large,	like	0.8,	or	make	sure	you	allow	
your shuffles to spill to disk (it’s the default since 
1.0.0).

 Fatal Errors and Exception Handling
A fatal error occurs when the Spark job cannot access 
the source, target, or repository. There are unexpected 
errors such as, data-source or target connection errors, 
missing required configuration with spark context errors, 
etc., which force the spark job to stop running and 
abort immediately. To handle fatal errors, we can first 
log an error in Error table and then allow the job to be 
terminated. An entry can be made to the error handling 
table	using	the	JOB_TERMINATED	=	‘Y’,	which	indicates	
that the job is failed due to a fatal error. 

In	case	of	job	terminate	or	abort	because	of	fatal	error,	
we	can	restart	the	spark	job.	Restartability	is	the	ability	to	
restart the spark job if a processing step fails to execute 
properly. This will avoid the need of any manual cleaning 
up before a failed job can restart.

 We need the ability to restart processing at the step 
where it failed as well as the ability to restart the entire 

job. To restart processing at the step where it failed, we 
can	use	Spark	Check-Point	to	a	fault-	tolerant	storage	
system such that it can recover from failures. There are 
two types of data that are check pointed.

•			Metadata	check	point	-	Saving	the	state	of	streaming	
computation job to fault-tolerant storage, like Hadoop 
Distributed File System(HDFS). This is used to 
recover from failure of the node running the driver of 
the streaming application (discussed in detail later). 
Metadata	includes:	

-		Configuration	-	The	configuration	that	was	used	to	
create the streaming application.

-  DStream operations - The set of DStream operations 
that define the streaming application.

-	 	Incomplete	batches	-	Batches	whose	jobs	are	
queued but have not completed yet.

The best way to handle a fatal error 
is by restarting a job which avoids 
the need of manual cleaning.

Error handling framework helps you 
fight against both fatal and non-
fatal errors.



 -  Watch out for memory leaks as these are often 
caused by accidentally closing over objects you 
don’t need in your lambdas. The way to diagnose is 
to look out for the “task serialized as XXX bytes” in 
the	logs.	If	XXX	is	larger	than	a	few	KB	or	more	than	
a MB, you may have a memory leak

•		java.io.IOException:	Filesystem	closed:

	 -			If	there	is	a	large	shuffle,	it	might	be	an	out-of-
memory error that causes executor failure, which 
then causes the Hadoop Filesystem to be closed 
in	their	shutdown	hook.	So,	the	RecordReaders	
in running tasks of that executor throw “java.
io.IOException:	Filesystem	closed”	exception.

•		java.lang.Illegal	State	Exception:

 -  The problem is caused by missing jars in the spark 
project; you need to add these jars to your project 
classpath

 -  Hadoop and Spark built into an app, or the cluster’s 
version of Spark are not matched with the Hadoop 
version.

•		java.lang.Unsupported	Class	Version	Error:

	 -		Setting	JAVA_HOME	at	whole	cluster	level

 -  Add compatible dependencies for spark core & Java 
in pom.xml

•		Error:scala.reflect.internal.Missing	Requirement	Error:

 -  This happens when you don’t have all of the 
dependencies for Scala reflection loaded by the 
primordial classloader. For running apps from SBT( 
an	open	source	build	tool	for	Scala)	setting	fork	:=	
true should do the trick. 

	 -		Find	your	launch	configuration	and	go	to	“Classpath”

	 -		Remove	Scala	Library	and	Scala	Compiler	from	the	
“Bootstrap” entries

 -  Add (as external jars) scala-reflect, scala-library and 
scala-compiler to user entries

 -  Make sure to add the right version

Non-Fatal Errors and Exception 
Handling

5.1. File Level Errors

The source data includes different data files and their 
corresponding metadata files which consists of metadata 
such as file size, no. of records, schema etc. A series of 
spark jobs can be designed to run on the source files once 
the data is ingested in the HDFS. These jobs handle the 
error exceptions for different scenarios. 

Following are the list of file level checks that can be 
performed without getting into the semantics of the 
underlying data. 

1. File Size

2. # records

3. Schema

4.	Threshold	Limit

The results of the above file level validations are stored in 
an	error	handling	table.	If	a	file	does	not	match	any	one	of	
these validations, then that file is corrupted and can’t be 
reprocessed in its current state. The file needs to be re-
ingested and then processed.

Data 
File

File size #	Records Schema
Threshold 

Limit

Error & Exception table

Source Data

Spark Jobs

Metadata 
File



5.2. Data Level Errors or Data Quality

The data level errors can be categorized as soft errors and hard errors.

Hard	Error/Exceptions:	These	are	the	validations	that	are	mandatory	to	process	the	record	further	to	the	data	lake.	For	

example,	Employee	ID	in	a	salary	table	can’t	be	blank.	A	record	is	not	valid	if	it	does	not	meet	this	validation	and	such	

records are dropped out from further processing and not made to the target data lake. These records with respective 

error information are loaded to the error table for further analysis and re-processing.

Soft	Error/Exceptions:	The	validations	that	are	nice	to	have	or	desired	on	a	data	record	are	soft	exceptions.	These	

records do not disturb the defined quality/integrity of the data lake, but they do not meet certain pre-defined validation 

rules. Error handing framework should allow them to be processed further and also loaded to the error table for further 

analysis, prevention and hence, reduction of the errors. 

Typically,	the	set	of	data	quality	validations	and	checks	are	defined	by	the	Business	and	IT	Engineers	together.

Non-fatal errors can be handled by 
introducing file level validations..



5.3. Automating the Data Quality Checks

•			The	data	is	ingested	to	the	data	lake	and	initially	set	

Filter	processed	flag	=	N	&	Error	fixed	flag	=Y

•		If	the	data	is:	

 -  Valid	(meets	the	pre-defined	validation	rules)	Data	-	

then it is checked if it came from the error table after 

fixing	the	error.	If	yes	then	set	the	processed	flag=	Y	

and	load	the	data	to	Data	hub.	If	data	is	not	from	the	

error table then it is directly loaded to Data hub.

 -  Invalid	Data	-	If	the	data	doesn’t	the	validation	rules	

then set the processed flag = N & Error fixed flag = N 

and load the data along with respective error details 

to the error table.

•			After	the	error	data	is	corrected	the	iteration	again	

continuous from validation.

Filter changed data  Filter processed flag = N
Error	Fixed	flag	=	Y

Data Hub Error table

Transformation Logic

Valid	
Data?

Load target table

Filter processed flag = N
Error Fixed flag = N

Source from 
Error table? Set	Processed	flag	=	Y

Source Error table

NO	(Error	or	Exception)

YES

YES

NO



Error Table Defined

Error Table 
JOB_ID																															Decimal(50)

JOB_SRT_	TIME																		TimeStamp(19)

SRC_LIST																												VarChar(200)

TRG_LIST																												VarChar(200)

JOB_TERMINATED														VarChar(1)

ERR_SEQ_ID																								Decimal(10)

ERR_MSG																												VarChar(2000)

ERR_TIME																												TimeStamp(19)

USR_NAME																									VarChar(50)

ERR_DATA_COL_1															VarChar(200)

ERR_DATA_COL_2															VarChar(200)

ERR_DATA_COL_3															VarChar(200)

.

.

ERR_DATA_COL_N														VarChar(200)

ERR_FIXED_FLAG																	VarChar(1)

ERR_PROCESSED_FLAG							VarChar(1)

Columns	description:

1.	 	JOB_ID:	Contains	the	JOB_ID	for	the	corresponding	job	which	processes	the	data

2.	 JOB_SRT_TIME	:	Contains	the	job	start	time

3.	 	SRC_LIST	:	Contains	the	list	of	source	from	where	the	data	is	expected	as	input	for	job

4.	 	TRG_LIST	:	Contains	list	of	target	storage	to	which	data	is	expected	to	be	stored	by	job

5.	 	JOB_TERMINATED	:	Indicator	or	a	flag	that	is	set	to	Y,	if	job	is	terminated	after	an	exception

6.	 	ERR_SEQ_ID:	Contains	the	ERR_SEQ_ID	for	the	corresponding	error	or	exception	thrown.

7.	 ERR_MSG	:	Describes	Error	message	in	detail

8.	 ERR_TIME	:	Time	of	error	thrown	by	job

9.	 USR_NAME	:	User	details

10.	 ERR_DATA_COL_N	:	Source	data	elements

11.	 	ERR_FIXED_FLAG	:	Value	is	set	to	Y,	if	data	issue	is	fixed	and	ready	to	process,	else	N.

12.	 	ERR_PROCESSED_FLAG	:	Value	is	set	to	Y,	if	data	is	processed	else	set	to	N.
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