
Error Handling Framework for
Data Lakes Whitepaper by

Hitesh Chauha
Project Lead, Mphasis

Nagaraj Niranji
Sr. Software Engineer, Mphasis

Introduction
The Data process life cycle of a data lake starts from
ingesting the data from multiple sources, processing it
in various stages and finally storing the processed data
in to multiple No-SQL databases. However, debugging
this kind of application is often a tough job. Therefore
robust exception and error handing mechanism is required
to process the data without any failure or interrupt.
Apache Spark is a lightning fast framework for
implementing highly scalable applications. The data and
processing logic is spread over the data nodes for parallel
processing and faster execution.

Need for Effective Error Handling
Exceptions need to be treated carefully because a simple
runtime exception caused by dirty source data can easily
lead to the termination of the whole process. Data gets
transformed in order to be joined and matched with other
data, which usually gets ingested from multiple sources.
While ingesting data from data sources, uncertainty about
nature of data and the transformation algorithms that are
often provided by the application coder, causes the job to
terminate with error.

For example, take the following generic data processing
model in using Spark/Kafka, without error handling in place.

Error Handling Framework - Benefits
A data lake is typically sourced with millions of records.
The ingestion and processing applications need to process
millions of records. The probability of having wrong/dirty
data in such scenario is high and non-negligible. Hence,
instead of letting the process terminate or loading the
bad/dirty data to the data lake, it is more desirable to
implement an error handling framework that manages
the errors effectively and automates the re-processing
adequately. The error handling framework should also
classify the errors that can be re-processed so that the
process doesn’t restart from the source.

Provided above is an overview of the process and its
benefits.

•	 For low error rate, handle each error individually.

•	 �Open connection to storage, save error packages for
later processing

•	 Clog the stream for high error rate streams

The errors can be grouped as Fatal and Non-Fatal Errors.
Fatal errors are those that cause a program to abort due
to hardware, network or infrastructure issues. Non-Fatal
errors are caused by the underlying files and bad data. The
rest of this document provides an error handling framework
for building a data lake and it uses Spark examples as
needed.

The multiple ways you can avoid an
ERROR..

•	 Retry micro batch n number of times

•	 �If all the retries are failed, kill the streaming
job manually

•	 Continuous trial and error

Data
Ingestionts

Message
Broker X

Micro-
batch

Spark
Streaming

Error

Data
Collections

Message
Broker

Micro-
batch

Micro-
batch

Spark
Streaming

Error Error
handling

MySQL
(Errors)

• �Data check pointing - Saving the generated Resilient
Distributed Data Sets(RDDs) to reliable storage. This is
necessary in some stateful transformations that combine
data across multiple batches. In such transformations,
the generated RDDs depend on RDDs of previous
batches, which causes the length of the dependency
chain to keep increasing with time. To avoid such
unbounded increase in recovery time (proportional
to dependency chain), intermediate RDDs of stateful
transformations are periodically check pointed to reliable
storage (e.g. HDFS) to cut off the dependency chains.

4.1.	Examples of some fatal error handling

• No Such Field Error:

	 - �When we use our own build of Spark against an
older version of Hive than what’s in CDH.

	 - �There might be dependency issue in the classpath.
Maven might be pulling down a very old version of
the dependency jar

• java.lang.Null Pointer Exception:

	 - �This is what shows up when the main method isn’t
static

	 - �We might be referring to other class

• java.lang.Out Of Memory Error

	 - �If your nodes have 6g, then use 6g rather than 4g,
spark.executor.memory=6g. Make sure you’re using
all the memory by checking the UI (it will say how
much memory you’re using)

	 - �Try using more partitions, you should have 2 - 4
per CPU. Input method editor (IME) increasing the
number of partitions is often the easiest way to
make a program more stable (and often faster). For
huge amounts of data you may need way more than
4 per CPU, I’ve had to use 8000 partitions in some
cases

	 - �Decrease the fraction of memory reserved for
caching by using spark.storage.memoryFraction. If
you don’t use cache() or persist in your code, this
might as well be 0. The default value is 0.6, which
means you only get 0.4 * 4g memory for your heap.
IME reducing the memory fraction often makes out
of memory exception(OOMs) go away. UPDATE:
Apparently with spark 1.6 we will no longer need to
play with these values; spark will determine them
automatically.

	 - �Similar to above but it shuffles memory fraction. If
your job needs more shuffle memory then set it to a
lower value (this might cause your shuffles to spill to
disk which can have catastrophic impact on speed).
Sometimes when it’s a shuffle which is causing out
of memory, you need to do opposite i.e. set it to
something large, like 0.8, or make sure you allow
your shuffles to spill to disk (it’s the default since
1.0.0).

�Fatal Errors and Exception Handling
A fatal error occurs when the Spark job cannot access
the source, target, or repository. There are unexpected
errors such as, data-source or target connection errors,
missing required configuration with spark context errors,
etc., which force the spark job to stop running and
abort immediately. To handle fatal errors, we can first
log an error in Error table and then allow the job to be
terminated. An entry can be made to the error handling
table using the JOB_TERMINATED = ‘Y’, which indicates
that the job is failed due to a fatal error.

In case of job terminate or abort because of fatal error,
we can restart the spark job. Restartability is the ability to
restart the spark job if a processing step fails to execute
properly. This will avoid the need of any manual cleaning
up before a failed job can restart.

 We need the ability to restart processing at the step
where it failed as well as the ability to restart the entire

job. To restart processing at the step where it failed, we
can use Spark Check-Point to a fault- tolerant storage
system such that it can recover from failures. There are
two types of data that are check pointed.

• �Metadata check point - Saving the state of streaming
computation job to fault-tolerant storage, like Hadoop
Distributed File System(HDFS). This is used to
recover from failure of the node running the driver of
the streaming application (discussed in detail later).
Metadata includes:

- �Configuration - The configuration that was used to
create the streaming application.

- �DStream operations - The set of DStream operations
that define the streaming application.

-	 �Incomplete batches - Batches whose jobs are
queued but have not completed yet.

The best way to handle a fatal error
is by restarting a job which avoids
the need of manual cleaning.

Error handling framework helps you
fight against both fatal and non-
fatal errors.

	 - �Watch out for memory leaks as these are often
caused by accidentally closing over objects you
don’t need in your lambdas. The way to diagnose is
to look out for the “task serialized as XXX bytes” in
the logs. If XXX is larger than a few KB or more than
a MB, you may have a memory leak

• java.io.IOException: Filesystem closed:

	 - ��If there is a large shuffle, it might be an out-of-
memory error that causes executor failure, which
then causes the Hadoop Filesystem to be closed
in their shutdown hook. So, the RecordReaders
in running tasks of that executor throw “java.
io.IOException: Filesystem closed” exception.

• java.lang.Illegal State Exception:

	 - �The problem is caused by missing jars in the spark
project; you need to add these jars to your project
classpath

	 - �Hadoop and Spark built into an app, or the cluster’s
version of Spark are not matched with the Hadoop
version.

• java.lang.Unsupported Class Version Error:

	 - �Setting JAVA_HOME at whole cluster level

	 - �Add compatible dependencies for spark core & Java
in pom.xml

• Error:scala.reflect.internal.Missing Requirement Error:

	 - �This happens when you don’t have all of the
dependencies for Scala reflection loaded by the
primordial classloader. For running apps from SBT(
an open source build tool for Scala) setting fork :=
true should do the trick.

	 - �Find your launch configuration and go to “Classpath”

	 - �Remove Scala Library and Scala Compiler from the
“Bootstrap” entries

	 - �Add (as external jars) scala-reflect, scala-library and
scala-compiler to user entries

	 - �Make sure to add the right version

Non-Fatal Errors and Exception
Handling

5.1.	File Level Errors

The source data includes different data files and their
corresponding metadata files which consists of metadata
such as file size, no. of records, schema etc. A series of
spark jobs can be designed to run on the source files once
the data is ingested in the HDFS. These jobs handle the
error exceptions for different scenarios.

Following are the list of file level checks that can be
performed without getting into the semantics of the
underlying data.

1.	File Size

2.	# records

3.	Schema

4.	Threshold Limit

The results of the above file level validations are stored in
an error handling table. If a file does not match any one of
these validations, then that file is corrupted and can’t be
reprocessed in its current state. The file needs to be re-
ingested and then processed.

Data
File

File size # Records Schema
Threshold

Limit

Error & Exception table

Source Data

Spark Jobs

Metadata
File

5.2.	Data Level Errors or Data Quality

The data level errors can be categorized as soft errors and hard errors.

Hard Error/Exceptions: These are the validations that are mandatory to process the record further to the data lake. For

example, Employee ID in a salary table can’t be blank. A record is not valid if it does not meet this validation and such

records are dropped out from further processing and not made to the target data lake. These records with respective

error information are loaded to the error table for further analysis and re-processing.

Soft Error/Exceptions: The validations that are nice to have or desired on a data record are soft exceptions. These

records do not disturb the defined quality/integrity of the data lake, but they do not meet certain pre-defined validation

rules. Error handing framework should allow them to be processed further and also loaded to the error table for further

analysis, prevention and hence, reduction of the errors.

Typically, the set of data quality validations and checks are defined by the Business and IT Engineers together.

Non-fatal errors can be handled by
introducing file level validations..

5.3.	Automating the Data Quality Checks

• �The data is ingested to the data lake and initially set

Filter processed flag = N & Error fixed flag =Y

• If the data is:

	 - �Valid (meets the pre-defined validation rules) Data -

then it is checked if it came from the error table after

fixing the error. If yes then set the processed flag= Y

and load the data to Data hub. If data is not from the

error table then it is directly loaded to Data hub.

	- �Invalid Data - If the data doesn’t the validation rules

then set the processed flag = N & Error fixed flag = N

and load the data along with respective error details

to the error table.

• �After the error data is corrected the iteration again

continuous from validation.

Filter changed data Filter processed flag = N
Error Fixed flag = Y

Data Hub Error table

Transformation Logic

Valid
Data?

Load target table

Filter processed flag = N
Error Fixed flag = N

Source from
Error table? Set Processed flag = Y

Source Error table

NO (Error or Exception)

YES

YES

NO

Error Table Defined

Error Table
JOB_ID Decimal(50)

JOB_SRT_ TIME TimeStamp(19)

SRC_LIST VarChar(200)

TRG_LIST VarChar(200)

JOB_TERMINATED VarChar(1)

ERR_SEQ_ID Decimal(10)

ERR_MSG VarChar(2000)

ERR_TIME TimeStamp(19)

USR_NAME VarChar(50)

ERR_DATA_COL_1 VarChar(200)

ERR_DATA_COL_2 VarChar(200)

ERR_DATA_COL_3 VarChar(200)

.

.

ERR_DATA_COL_N VarChar(200)

ERR_FIXED_FLAG VarChar(1)

ERR_PROCESSED_FLAG VarChar(1)

Columns description:

1.	 �JOB_ID: Contains the JOB_ID for the corresponding job which processes the data

2.	 JOB_SRT_TIME : Contains the job start time

3.	 �SRC_LIST : Contains the list of source from where the data is expected as input for job

4.	 �TRG_LIST : Contains list of target storage to which data is expected to be stored by job

5.	 �JOB_TERMINATED : Indicator or a flag that is set to Y, if job is terminated after an exception

6.	 �ERR_SEQ_ID: Contains the ERR_SEQ_ID for the corresponding error or exception thrown.

7.	 ERR_MSG : Describes Error message in detail

8.	 ERR_TIME : Time of error thrown by job

9.	 USR_NAME : User details

10.	 ERR_DATA_COL_N : Source data elements

11.	 �ERR_FIXED_FLAG : Value is set to Y, if data issue is fixed and ready to process, else N.

12.	 �ERR_PROCESSED_FLAG : Value is set to Y, if data is processed else set to N.

Hitesh Chauhan
Project Lead – Mphasis Analytics Practice

Hitesh has 10 years of experience in designing, developing analytics
solutions using technologies like Big Data and Java. Heis well experienced
in Hadoop and Spark. He has played multiple roles in the IT industry -
developer, architect and team lead. Data management, data analytics
are some of the key areas he is interested in. Hitesh is currently working
as a project lead at Mphasis and is responsible for developing spark
transformations, exception handling and building the presentation layers.

Nagaraj Niranji
Sr. Software Engineer – Mphasis Analytics Practice

Nagaraj has 5 years of experience in designing and developing Java and
BigData solutions using Hadoop and Spark technologies. He has played
multiple roles in the IT industry; he has worked as a developer and a team
lead.

Nagaraj is a Senior Software Engineer at Mphasis for five months now.
Prior to this he worked for Cognizant Technology Solutions and HCL
Technologies. He is a bachelor of engineering from MS Ramaiah Institute of
Technology.

Copyright © Mphasis Corporation. All rights reserved.

For more information, contact: marketinginfo@mphasis.com

www.mphasis.com

INDIA
Bagmane World Technology Center
Marathahalli Ring Road
Doddanakundhi Village
Mahadevapura
Bangalore 560 048, India
Tel.: +91 80 3352 5000

USA
226 Airport Parkway
San Jose
California, 95110
USA

UK
88 Wood Street
London EC2V 7RS, UK
Tel.: +44 20 8528 1000

USA
460 Park Avenue South
Suite #1101
New York, NY 10016, USA
Tel.: +1 212 686 6655

VA
S

30
/1

1/
16

 U
S

LE
TT

ER
 B

AS
IL

41
87

About Mphasis
Mphasis is a global technology services and solutions company specializing in the areas of Digital, Governance and Risk & Compliance. Our solution focus
and superior human capital propels our partnership with large enterprise customers in their digital transformation journeys. We partner with global financial
institutions in the execution of their risk and compliance strategies. We focus on next generation technologies for differentiated solutions delivering
optimized operations for clients.

